916
Views
2
CrossRef citations to date
0
Altmetric
Addendum

Drosophila as a potential model to ameliorate mutant Huntington-mediated cardiac amyloidosis

, , , , &
Article: e968003 | Received 20 Jul 2014, Accepted 17 Sep 2014, Published online: 03 Nov 2014

References

  • Arrasate M., Finkbeiner S. Protein aggregates in Huntington's disease. Exp Neurol 2012; 238:1-11; PMID:22200539; http://dx.doi.org/10.1016/j.expneurol.2011.12.013
  • Lanska DJ, Lavine L, Lanska MJ, Schoenberg BS. Huntington's disease mortality in the United States. Neurology 1988; 38:769-72; PMID:2966305; http://dx.doi.org/10.1212/WNL.38.5.769
  • Bradford JW, Li S, Li XJ. Polyglutamine toxicity in non-neuronal cells. Cell Res 2010; 20:400-07; PMID:20231860; http://dx.doi.org/10.1038/cr.2010.32
  • Chiu E, Alexander L. Causes of death in Huntington's disease. Med J Aust 1982; 1:153; PMID:6210834
  • Heemskerk AW, Roos RA. Aspiration pneumonia and death in Huntington's disease. PLoS Curr 2012; 4:RRN1293; PMID:22307361; http://dx.doi.org/10.1371/currents.RRN1293
  • Sorensen SA, Fenger K. Causes of death in patients with Huntington's disease and in unaffected first degree relatives. J Med Genet 1992; 29:911-4; PMID:1479606; http://dx.doi.org/10.1136/jmg.29.12.911
  • Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genet 2013; 9:e1004024; PMID:24367279; http://dx.doi.org/10.1371/journal.pgen.1004024
  • Bier E, Bodmer R. Drosophila, an emerging model for cardiac disease. Gene 2004; 342:1-11; PMID: 15527959; http://dx.doi.org/10.1016/j.gene.2004.07.018
  • Ocorr K, Akasaka T, Bodmer R. Age-related cardiac disease model of Drosophila. Mech Ageing Dev 2007; 128: 112-6; PMID:17125816; http://dx.doi.org/10.1016/j.mad.2006.11.023
  • Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA. Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci U S A 2006; 103:1394-9; PMID: 16432241; http://dx.doi.org/10.1073/pnas.0507359103
  • Li SH, Schilling G, Young WS 3rd, Li XJ, Margolis RL, Stine OC, Wagster MV, Abbott MH, Franz ML, Ranen NG, et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 1993; 11:985-93; PMID:8240819; http://dx.doi.org/10.1016/0896-6273(93)90127-D
  • Waters CW, Varuzhanyan G, Talmadge RJ, Voss AA. Huntington disease skeletal muscle is hyperexcitable owing to chloride and potassium channel dysfunction. Proc Natl Acad Sci U S A 2013; 110:9160-5; PMID: 23671115; http://dx.doi.org/10.1073/pnas.1220068110
  • Strand AD, Aragaki AK, Shaw D, Bird T, Holton J, Turner C, Tapscott SJ, Tabrizi SJ, Schapira AH, Kooperberg C, et al. Gene expression in Huntington's disease skeletal muscle: a potential biomarker. Hum Mol Genet 2005; 14:1863-76; PMID:15888475; http://dx.doi.org/10.1093/hmg/ddi192
  • Han Z, Yi P, Li X, Olson EN. Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 2006; 133:1175-82; PMID:16467358; http://dx.doi.org/10.1242/dev.02285
  • Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, Robbins J. Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci U S A 2004; 101:10132-6; PMID:15220483; http://dx.doi.org/10.1073/pnas.0401900101
  • Mihm MJ, Amann DM, Schanbacher BL, Altschuld RA, Bauer JA, Hoyt KR. Cardiac dysfunction in the R6/2 mouse model of Huntington's disease. Neurobiol Dis 2007; 25:297-308; PMID:17126554; http://dx.doi.org/10.1016/j.nbd.2006.09.016
  • Tashiro E, Zako T, Muto H, Itoo Y, Sörgjerd K, Terada N, Abe A, Miyazawa M, Kitamura A, Kitaura H, et al. Prefoldin protects neuronal cells from polyglutamine toxicity by preventing aggregation formation. J Biol Chem 2013; 288:19958-72; PMID:23720755; http://dx.doi.org/10.1074/jbc.M113.477984
  • Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 2000; 59:133-54; PMID: 10961426
  • Cheng B, Gong H, Xiao H, Petersen RB, Zheng L, Huang K. Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta 2013; 1830:4860-71; PMID:23820032
  • Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D, Malorni W, Davies KJ, Carafoli E, Scorrano L. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol Med 2010; 2:490-503; PMID:21069748; http://dx.doi.org/10.1002/emmm.201000102
  • Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R, Robbins J. Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation 2008; 117:2743-51; PMID:18490523; http://dx.doi.org/10.1161/CIRCULATIONAHA.107.750232
  • Kobayashi, Y, Kume A, Li M, Doyu M, Hata M, Ohtsuka K, Sobue G. Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J Biol Chem 2000; 275:8772-8; PMID:10722721; http://dx.doi.org/10.1074/jbc.275.12.8772
  • Kuo Y, Ren S, Lao U, Edgar BA, Wang T. Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 2013; 4:e833; PMID:24091676; http://dx.doi.org/10.1038/cddis.2013.351
  • Kiriazis H, Jennings NL, Davern P, Lambert G, Su Y, Pang T, Du X, La Greca L, Head GA, Hannan AJ, et al. Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of Huntington's disease. J Physiol 2012; 590:5845-60; PMID:22890713; http://dx.doi.org/10.1113/jphysiol.2012.238113
  • Groenendyk J, Sreenivasaiah PK, Kim do H, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res 2010; 107:1185-97; PMID:21071716; http://dx.doi.org/10.1161/CIRCRESAHA.110.227033
  • Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J, Hewett T, Robbins J. Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 2001; 89:84-91; PMID:11440982; http://dx.doi.org/10.1161/hh1301.092688
  • Rodolfo C, Ciccosanti F, Giacomo GD, Piacentini M, Fimia GM. Proteomic analysis of mitochondrial dysfunction in neurodegenerative diseases. Expert Rev Proteomics 2010; 7:519-42; PMID:20653508; http://dx.doi.org/10.1586/epr.10.43
  • Shirendeb U, Reddy AP, Manczak M, Calkins MJ, Mao P, Tagle DA, Reddy PH. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum Mol Genet 2011; 20:1438-55; PMID:21257639; http://dx.doi.org/10.1093/hmg/ddr024
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003; 552:335-44; PMID:14561818; http://dx.doi.org/10.1113/jphysiol.2003.049478
  • Barth E, Stammler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 1992; 24:669-81; PMID:1404407; http://dx.doi.org/10.1016/0022-2828(92)93381-S
  • Zang Q, Maass DL, White J, Horton JW. Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy. J Appl Physiol 1985; 102:103-12 (2007); PMID:16931562; http://dx.doi.org/10.1152/japplphysiol.00359.2006
  • Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J. Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 2005; 112:3451-61; PMID: 16316967; http://dx.doi.org/10.1161/CIRCULATIONAHA.105.572552
  • Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC. A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 1998; 18:159-63; PMID:9462746; http://dx.doi.org/10.1038/ng0298-159
  • Maloyan A, Osinska H, Lammerding J, Lee RT, Cingolani OH, Kass DA, Lorenz JN, Robbins J, et al. Biochemical and mechanical dysfunction in a mouse model of desmin-related myopathy. Circ Res 2009; 104:1021-8; PMID:19299643; http://dx.doi.org/10.1161/CIRCRESAHA.108.193516
  • Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 2006; 342:184-90; PMID:16472774; http://dx.doi.org/10.1016/j.bbrc.2006.01.136
  • Taverne YJ, Bogers AJ, Duncker DJ, Merkus D. Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev 2013; 2013:862423; PMID:23738043; http://dx.doi.org/10.1155/2013/862423
  • Wohlgemuth SL, Crawford BD, Pilgrim DB. The myosin co-chaperone UNC-45 is required for skeletal and cardiac muscle function in zebrafish. Dev Biol 2007; 303:483-92; PMID:17189627; http://dx.doi.org/10.1016/j.ydbio.2006.11.027
  • Lee CF, Melkani GC, Yu Q, Suggs JA, Kronert WA, Suzuki Y, Hipolito L, Price MG, Epstein HF, Bernstein SI. Drosophila UNC-45 accumulates in embryonic blastoderm and in muscles, and is essential for muscle myosin stability. J Cell Sci 2011; 124:699-705; PMID:21285246; http://dx.doi.org/10.1242/jcs.078964
  • Gazda L, Pokrzywa W, Hellerschmied D, Löwe T, Forné I, Mueller-Planitz F, Hoppe T, Clausen T. The myosin chaperone UNC-45 is organized in tandem modules to support myofilament formation in C. elegans. Cell 2013; 152:183-95; PMID:23332754; http://dx.doi.org/10.1016/j.cell.2012.12.025
  • Melkani GC, Bodmer R, Ocorr K, Bernstein SI. The UNC-45 chaperone is critical for establishing myosin-based myofibrillar organization and cardiac contractility in the Drosophila heart model. PLoS One 2011; 6:e22579; PMID:21799905; http://dx.doi.org/10.1371/journal.pone.0022579
  • Srikakulam R, Liu L, Winkelmann DA. Unc45b forms a cytosolic complex with Hsp90 and targets the unfolded myosin motor domain. PLoS One 2008; 3:e2137; PMID:18478096; http://dx.doi.org/10.1371/journal.pone.0002137
  • Barral JM, Hutagalung AH, Brinker A, Hartl FU, Epstein HF. Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 2002; 295:669-71; PMID:11809970; http://dx.doi.org/10.1126/science.1066648
  • Pattison JS, Robbins J. Protein misfolding and cardiac disease: establishing cause and effect. Autophagy 2008; 4:821-3; PMID:18612262; http://dx.doi.org/10.4161/auto.6502
  • Kim H-D, Kim CH, Rah B-J, Chung H-I, Shim T-S. Quantitative study on the relation between structural and functional properties of the hearts from three different mammals. The Anatomical Record 1994; 238:199-206; PMID:8154606; http://dx.doi.org/10.1002/ar.1092380206