1,705
Views
23
CrossRef citations to date
0
Altmetric
Addendum

Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13

, , &
Article: e974982 | Received 21 Aug 2014, Accepted 06 Oct 2014, Published online: 01 Dec 2014

References

  • Prasad AS. Discovery of human zinc deficiency and studies in an experimental human model. Am J Clin Nutr 1991; 53:403-12; PMID:1989405
  • Kitamura H, Morikawa H, Kamon H, Iguchi M, Hojyo S, Fukada T, Yamashita S, Kaisho T, Akira S, Murakami M, et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat Immunol 2006; 7:971-7; PMID:16892068; http://dx.doi.org/10.1038/ni1373
  • Fukada T, Hojyo S, Bin BH. Zinc signal in growth control and bone diseases. In Zinc Signals in Cellular Functions and Disorders, Fukada T, Kambe T (eds) Tokyo: Springer, 249-267
  • Hojyo S, Miyai T, Fujishiro H, Kawamura M, Yasuda T, Hijikata A, Bin BH, Irié T, Tanaka J, Atsumi T, et al. Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc Natl Acad Sci U S A 2014; 111:11786-91; PMID:25074919; http://dx.doi.org/10.1073/pnas.1323557111
  • Miyai T, Hojyo S, Ikawa T, Kawamura M, Irie T, Ogura H, Hijikata A, Bin BH, Yasuda T, Kitamura H, et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc Natl Acad Sci U S Am 2014; 111:11780-5; PMID:25074913; http://dx.doi.org/10.1073/pnas.1323549111
  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. Overview of mammalian zinc transporters. Cell Mol Life sci 2004; 61:49-68; PMID:14704853; http://dx.doi.org/10.1007/s00018-003-3148-y
  • Taylor KM, Nicholson RI. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochimic Biophys Acta 2003; 1611:16-30; PMID:12659941; http://dx.doi.org/10.1016/S0005-2736(03)00048-8
  • Lu M, Chai J, Fu D. Structural basis for autoregulation of the zinc transporter YiiP. Nat Struct Mol Biol 2009; 16:1063-7; PMID:19749753; http://dx.doi.org/10.1038/nsmb.1662
  • Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem 2006; 281:39699-707; PMID:17065149; http://dx.doi.org/10.1074/jbc.M605821200
  • Itsumura N, Inamo Y, Okazaki F, Teranishi F, Narita H, Kambe T, Kodama H, et al. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PloS one 2013; 8:e64045; PMID:23741301; http://dx.doi.org/10.1371/journal.pone.0064045
  • Lee JY, Cole TB, Palmiter RD, Koh JY. Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neuroscience 2000; 20:RC79; PMID:10807937
  • Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 2009; 58:2070-83; PMID:19542200; http://dx.doi.org/10.2337/db09-0551
  • Fukada T, Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 2011; 3:662-74.; PMID:21566827; http://dx.doi.org/10.1039/c1mt00011j
  • Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Ryu JH, Chun CH, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 2014; 156:730-43; PMID:24529376; http://dx.doi.org/10.1016/j.cell.2014.01.007
  • Andrews GK. Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans 2008; 36:1242-6; PMID:19021533; http://dx.doi.org/10.1042/BST0361242
  • Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael DJ, Ruben B, Fazel N. Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol 2007; 56:116-24; PMID:17190629; http://dx.doi.org/10.1016/j.jaad.2006.08.015
  • Kambe T, Andrews GK. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol 2009; 29:129-39; PMID:18936158; http://dx.doi.org/10.1128/MCB.00963-08
  • Byers PH, Murray ML. Ehlers-Danlos syndrome: a showcase of conditions that lead to understanding matrix biology. Matrix Biol 2014; 33:10-5; PMID:23920413; http://dx.doi.org/10.1016/j.matbio.2013.07.005
  • Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, et al. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-β signaling pathways. PloS one 2008; 3:e3642; PMID:18985159; http://dx.doi.org/10.1371/journal.pone.0003642
  • Giunta C, Elcioglu NH, Albrecht B, Eich G, Chambaz C, Janecke AR, Yeowell H, Weis M, Eyre DR, Kraenzlin M, et al. Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 2008; 82:1290-305; PMID:18513683; http://dx.doi.org/10.1016/j.ajhg.2008.05.001
  • Bin BH, Fukada T, Hosaka T, Yamasaki S, Ohashi W, Hojyo S, Miyai T, Nishida K, Yokoyama S, Hirano T. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 2011; 286:40255-65; PMID:21917916; http://dx.doi.org/10.1074/jbc.M111.256784
  • Bin BH, Hojyo S, Hosaka T, Bhin J, Kano H, Miyai T, Ikeda M, Kimura-Someya T, Shirouzu M, Cho EG, et al. Molecular pathogenesis of Spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med 2014; 6:1028-42; PMID:25007800; http://dx.doi.org/10.15252/emmm.201303809
  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245:1059-65; PMID:2772657; http://dx.doi.org/10.1126/science.2772657
  • Fanen P, Wohlhuter-Haddad A, Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell biol 2014; 52:94-102; PMID:24631642; http://dx.doi.org/10.1016/j.biocel.2014.02.023
  • Skach WR. CFTR: new members join the fold. Cell 2006; 127:673-5; PMID:17110327; http://dx.doi.org/10.1016/j.cell.2006.11.002
  • Okiyoneda T, Veit G, Dekkers JF, Bagdany M, Soya N, Xu H, Roldan A, Verkman AS, Kurth M, Simon A, et al. Mechanism-based corrector combination restores DeltaF508-CFTR folding and function. Nat Chem Biol 2013; 9:444-54; PMID:23666117; http://dx.doi.org/10.1038/nchembio.1253
  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 2011; 108:18843-8; PMID:21976485; http://dx.doi.org/10.1073/pnas.1105787108
  • Eckford PD, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C, Ahmadi S, Ip W, Chung TE, Du K, et al. VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface. Chem Biol 2014; 21:666-78; PMID:24726831; http://dx.doi.org/10.1016/j.chembiol.2014.02.021
  • Curran MP, McKeage K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs 2009; 69:859-88; PMID:19441872; http://dx.doi.org/10.2165/00003495-200969070-00006
  • Konstantinova IM, Tsimokha AS, Mittenberg AG. Role of proteasomes in cellular regulation. Int Rev Cell Mol Biol 2008; 267:59-124; PMID:18544497; http://dx.doi.org/10.1016/S1937-6448(08)00602-3