6,462
Views
186
CrossRef citations to date
0
Altmetric
Review

Blood cells and endothelial barrier function

&
Article: e978720 | Received 20 Aug 2014, Accepted 15 Oct 2014, Published online: 25 Feb 2015

References

  • Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2010; 11:e19; PMID:19563700; http://dx.doi.org/10.1017/S1462399409001112
  • Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209-21; PMID:19217423; http://dx.doi.org/10.1016/j.devcel.2009.01.004
  • Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev 2006; 86:279-367; PMID:16371600; http://dx.doi.org/10.1152/physrev.00012.2005
  • Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 2009; 335:17-25; PMID:8855014; http://dx.doi.org/10.1007/s00441-008-0694-5
  • Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84:345-57; PMID:8608588; http://dx.doi.org/10.1016/S0092-8674(00)81279-9
  • Luscinskas FW, Shaw SK. The biology of endothelial cell-cell lateral junctions. Microcirculation. 2001 Jun;8(3):141-2. PMID:11498777.
  • Yuan SY, Rigor RR. Regulation of endothelial barrier function. In: Granger DN, Granger JP, editors. Integrated Systems Physiology: From Molecule to Function. San Rafael (CA): Morgan & Claypool Life Sciences; 2011. p.1-146.
  • García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 2014; 112; PMID:25183310
  • Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. Prog Mol Biol Transl Sci 2013; 116:119-44; PMID:23481193; http://dx.doi.org/10.1016/B978-0-12-394311-8.00006-6
  • Gavard J, Gutkind JS. VE-cadherin and claudin-5: it takes two to tango. Nat Cell Biol 2008; 10:883-5; PMID:18670447; http://dx.doi.org/10.1038/ncb0808-883
  • Volberg T, Geiger B, Dror R, Zick Y. Modulation of intercellular adherens-type junctions and tyrosine phosphorylation of their components in RSV-transformed cultured chick lens cells. Cell Regul 1991; 2:105-20; PMID:1650581.
  • Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell 2012; 22:146-57; PMID:22264731; http://dx.doi.org/10.1016/j.devcel.2011.11.002
  • Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121:2115-22; PMID:18565824; http://dx.doi.org/10.1242/jcs.017897
  • Konstantoulaki M, Kouklis P, Malik AB. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am J Physiol Lung Cell Mol Physiol 2003; 285:L434-L342; PMID:12740216
  • Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 2000; 275:5983-6; PMID:10681592; http://dx.doi.org/10.1074/jbc.275.8.5983
  • Vockel M, Vestweber D. How T cells trigger the dissociation of the endothelial receptor phosphatase VE-PTP from VE-cadherin. Blood 2013; 122:2512-22; PMID:23908467; http://dx.doi.org/10.1182/blood-2013-04-499228
  • Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, Linnepe R, Ipe U, Stadtmann A, Zarbock A, et al. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 2014; 15:223-30; PMID:24487320; http://dx.doi.org/10.1038/ni.2824
  • Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem 1996; 65:475-02; PMID:8811187; http://dx.doi.org/10.1146/annurev.bi.65.070196.002355
  • Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 2003; 83:1359-400; PMID:14506308
  • Laird DW. The gap junction proteome and its relationship to disease. Trends Cell Biol 2010; 20:92-101; PMID:19944606; http://dx.doi.org/10.1016/j.tcb.2009.11.001
  • Solan JL, Lampe PD. Connexin43 phosphorylation: structural changes and biological effects. Biochem J 2009; 419:261-72; PMID:19309313; http://dx.doi.org/10.1042/BJ20082319
  • Looft-Wilson RC, Payne GW, Segal SS. Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. J Appl Physiol (1985). 2004; 97:1152-8; PMID:15169746
  • Isakson BE, Ramos SI, Duling BR. Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res. 2007; 100:246-54; PMID:17218602; http://dx.doi.org/10.1161/01.RES.0000257744.23795.93
  • Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol 2006; 248:261-98; PMID:16487793; http://dx.doi.org/10.1016/S0074-7696(06)48005-0
  • Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012; 9:23; PMID:23140302
  • Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 2011; 73:283-309; PMID:20936941; http://dx.doi.org/10.1146/annurev-physiol-012110-142150
  • Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harbor Perspect Biol 2010; 2:a002907; PMID:20182608; http://dx.doi.org/10.1101/cshperspect.a002907
  • Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, Ghersi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 2012; 138:861-79; PMID:22886143; http://dx.doi.org/10.1007/s00418-012-1001-9
  • Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harbor Perspect Biol 2009; 1:a002584; PMID:20066090; http://dx.doi.org/10.1101/cshperspect.a002584
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653-60; PMID:12743111
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123:1777-88; PMID:8276896; http://dx.doi.org/10.1083/jcb.123.6.1777
  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludens and zonula occludens 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274:23463-67; PMID:10438525; http://dx.doi.org/10.1074/jbc.274.33.23463
  • Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11:4131-42; PMID:11102513; http://dx.doi.org/10.1091/mbc.11.12.4131
  • Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142:117-27; PMID:9660867; http://dx.doi.org/10.1083/jcb.142.1.117
  • Williams LA, Martin-Padura I, Dejana E, Hogg N, Simmons DL. Identification and characterisation of human junctional adhesion molecule (JAM). Mol Immunol 1999; 36:1175-88; PMID:10698320; http://dx.doi.org/10.1016/S0161-5890(99)00122-4
  • Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000; 275:20520-6; PMID:10877843; http://dx.doi.org/10.1074/jbc.M905251199
  • Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002; 91:877-87; PMID:12433832; http://dx.doi.org/10.1161/01.RES.0000039537.73816.E5
  • Cohen LA, Guan JL. Mechanisms of focal adhesion kinase regulation. Curr Cancer Drug Targets 2005; 5:629-43; PMID:16375667; http://dx.doi.org/10.2174/156800905774932798
  • Curtis TM, McKeown-Longo PJ, Vincent PA, Homan SM, Wheatley EM, Saba TM. Fibronectin attenuates increased endothelial monolayer permeability after RGD peptide, anti-alpha 5 beta 1, or TNF-alpha exposure. Am J Physiol 1995; 269:L248-60; PMID:7544537
  • Wu MH, Ustinova E, Granger HJ. Integrin binding to fibronectin and vitronectin maintains the barrier function of isolated porcine coronary venules. J Physiol 2001; 532:785-91; PMID:11313446; http://dx.doi.org/10.1111/j.1469-7793.2001.0785e.x
  • Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157:149-60; PMID:11927607; http://dx.doi.org/10.1083/jcb.200109079
  • Guo M, Daines D, Tang J, Shen Q, Perrin RM, Takada Y, Yuan SY, Wu MH. Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism. Arterioscler Thromb Vasc Biol 2009; 29:394-400; PMID:19122172; http://dx.doi.org/10.1161/ATVBAHA.108.180950
  • Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9:121-167; PMID:17373886; http://dx.doi.org/10.1146/annurev.bioeng.9.060906.151959
  • Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 2007; 18:2885-93; PMID:17942961; http://dx.doi.org/10.1681/ASN.2007010119
  • Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO. Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 2009; 83:24-33; PMID:19297368; http://dx.doi.org/10.1093/cvr/cvp093
  • Haraldsson B, Nystrom J, Deen WM. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 2008; 88:451-87; PMID:18391170; http://dx.doi.org/10.1152/physrev.00055.2006
  • Rippe B, Rosengren BI, Carlsson O, Venturoli D. Transendothelial transport: the vesicle controversy. J Vasc Res 2002;39:375-90; PMID:12297701; http://dx.doi.org/10.1159/000064521
  • Minshall RD, Tiruppathi C, Vogel SM, Malik AB. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 2002;117:105-12; PMID:11935286; http://dx.doi.org/10.1007/s00418-001-0367-x
  • Carlsson O, Nielsen S, Zakaria E, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271:H2254-H2262; PMID:8997281
  • Badaut J, Ashwal S, Adami A, Tone B, Recker R, Spagnoli D, Ternon B, Obenaus A. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 2011; 31:819-831; PMID:20877385; http://dx.doi.org/10.1038/jcbfm.2010.163
  • Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 2002; 87:621-23; PMID:12237771; http://dx.doi.org/10.1038/sj.bjc.6600512
  • Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, Birukov KG. Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res 2007; 313:2504-20; PMID:17493609; http://dx.doi.org/10.1016/j.yexcr.2007.03.036
  • Buonassisi V, Venter JC. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc Natl Acad Sci U S A 1976; 73:1612-6; PMID:179091; http://dx.doi.org/10.1073/pnas.73.5.1612
  • Ahuja N, Kumar P, Bhatnagar R. The adenylate cyclase toxins. Crit Rev Microbiol 2004; 30:187-96; PMID:15490970; http://dx.doi.org/10.1080/10408410490468795
  • Vogel CF, Sciullo E, Park S, Liedtke C, Trautwein C, Matsumura F. Dioxin increases C/EBPbeta transcription by activating cAMP/protein kinase A. J Biol Chem 2004; 279:8886-94; PMID:14684744; http://dx.doi.org/10.1074/jbc.M310190200
  • Vulliemoz Y, Verosky M, Triner L. Effect of albuterol and terbutaline, synthetic beta adrenergic stimulants, on the cyclic 3′,5′-adenosine monophosphate system in smooth muscle. J Pharmacol Exp Ther 1975; 195:549-56; PMID:172625
  • Lugnier C, Schini VB. Characterization of cyclic nucleotide phosphodiesterases from cultured bovine aortic endothelial cells. Biochem Pharmacol 1990; 39:75-84; PMID:2153383; http://dx.doi.org/10.1016/0006-2952(90)90650-A
  • Sayner SL, Alexeyev MDC, Stevens T. Soluble adenylyl cyclase reveals the significance of cAMP compartmentation on pulmonary microvascular endothelial cell barrier. Circ Res 2006; 98:675-81; PMID:16469954; http://dx.doi.org/10.1161/01.RES.0000209516.84815.3e
  • Adamson RH, Liu B, Fry GN, Rubin LL, Curry FE. Microvascular permeability and number of tight junctions are modulated by cAMP. Am J Physiol 1998; 274:H1885-94; PMID:9841516
  • Parnell E, Smith BO, Palmer TM, Terrin A, Zaccolo M, Yarwood SJ. Regulation of the inflammatory response of vascular endothelial cells by EPAC1. Br J Pharmacol 2012; 166:434-46; PMID:22145651; http://dx.doi.org/10.1111/j.1476-5381.2011.01808.x
  • Waschke J, Baumgartner W, Adamson RH, Zeng M, Aktories K, Barth H, Wilde C, Curry FE, Drenckhahn D. Requirement of Rac activity for maintenance of capillary endothelial barrier properties. Am J Physiol Heart Circ Physiol 2004; 286:H394-H401; PMID:14512275; http://dx.doi.org/10.1152/ajpheart.00221.2003
  • Cullere X, Shaw SK, Andersson L, Hirahashi J, Luscinskas FW, Mayadas TN. Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase. Blood 2005; 105:1950-5; PMID:15374886; http://dx.doi.org/10.1182/blood-2004-05-1987
  • Yuan SY, Granger HJ, Zawieja DC, Chilian WM. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am J Physiol 1992; 263:H641-6; PMID:1510161
  • Temmesfeld-Wollbrück B, Hocke AC, Suttorp N, Hippenstiel S. Adrenomedullin and endothelial barrier function. Thromb Haemost 2007; 98:944-51; PMID:18000597
  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13-25; PMID:19664713; http://dx.doi.org/10.1016/j.nbd.2009.07.030
  • Ballabh P, Braun A, Nedergaard M. The blood-brain barrier:an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16:1-13; PMID:15207256; http://dx.doi.org/10.1016/j.nbd.2003.12.016
  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468:557-61; PMID:20944627; http://dx.doi.org/10.1038/nature09522
  • Dohgu S, Yamauchi A, Takata F, Naito M, Tsuruo T, Higuchi S, Sawada Y, Kataoka Y. Transforming growth factor-beta1 upregulates the tight junction and P-glycoprotein of brain microvascular endothelial cells. Cell Mol Neurobiol 2004; 24:491-7; PMID:15206827; http://dx.doi.org/10.1023/B:CEMN.0000022776.47302.ce
  • Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, Kanda T. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res 2012; 37:401-9; PMID:22002662; http://dx.doi.org/10.1007/s11064-011-0626-8
  • Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 2004; 89:503-13; PMID:15056293; http://dx.doi.org/10.1111/j.1471-4159.2004.02343.x
  • Rodrigues SF, Granger DN. Leukocyte-mediated tissue injury in ischemic stroke. Curr Med Chem 2014; 21:2130-7; PMID:24372215; http://dx.doi.org/10.2174/0929867321666131228192119
  • Fox ED, Heffernan DS, Cioffi WG, Reichner JS. Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. Crit Care 2013; 17:R226; PMID:24099563
  • Hofman PM. Pathobiology of the neutrophil-intestinal epithelial cell interaction: role in carcinogenesis. World J Gastroenterol 2010; 16:5790-800; PMID:21154999; http://dx.doi.org/10.3748/wjg.v16.i46.5790
  • Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 2006; 103:12493-8; PMID:16891410; http://dx.doi.org/10.1073/pnas.0601807103
  • Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, et al. Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 2014; 35:1286-92; PMID:24485508; http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.003
  • Granger DN. Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 1988; 255:H1269-1275; PMID:3059826
  • Rodrigues SF, Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovasc Res 2010; 87:291-9; PMID:20299333; http://dx.doi.org/10.1093/cvr/cvq090
  • Boueiz A, Hassoun PM. Regulation of endothelial barrier function by reactive oxygen and nitrogen species. Microvasc Res 2009; 77:26-34; PMID:19041330; http://dx.doi.org/10.1016/j.mvr.2008.10.005
  • Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem 2009; 284:25602-11; PMID:19633358; http://dx.doi.org/10.1074/jbc.M109.009894
  • van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, Collard JG, Hordijk PL. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 2002; 115:1837-46; PMID:11956315
  • Kvietys PR, Granger DN. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 2012; 52:556-592; PMID:22154653; http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.002
  • Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol 1992; 262:H611-5; PMID:1539722
  • Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 2010; 87:272-80; PMID:20479130; http://dx.doi.org/10.1093/cvr/cvq144
  • Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88:4651-5; PMID:1675786; http://dx.doi.org/10.1073/pnas.88.11.4651
  • Wojciak-Stothard B, Torondel B, Zhao L, Renne T, Leiper JM. Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 2009; 20:33-42; PMID:18923147; http://dx.doi.org/10.1091/mbc.E08-04-0395
  • Kvietys PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. Am J Physiol 1997; 273:G1189-99; PMID:9435543
  • Rosenberg GA, Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 2007; 22:E4; PMID:17613235
  • Hermant B, Bibert S, Concord E, Dublet B, Weidenhaupt M, Vernet T, Gulino-Debrac D. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. J Biol Chem 2003; 278:14002-12; PMID:12584200; http://dx.doi.org/10.1074/jbc.M300351200
  • Zimmerman BJ, Granger DN. Reperfusion-induced leukocyte infiltration: role of elastase. Am J Physiol 1990; 259:H390-4; PMID:2167021
  • DiStasi MR, Ley K. Opening the flood-gates: how neutrophil-endothelial interactions regulate permeability. Trends Immunol 2009; 30:547-56; PMID:19783480; http://dx.doi.org/10.1016/j.it.2009.07.012
  • van Wetering S, van den Berk N, van Buul JD, Mul FP, Lommerse I, Mous R, ten Klooster JP, Zwaginga JJ, Hordijk PL. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol 2003; 285:C343-52; PMID:12700137; http://dx.doi.org/10.1152/ajpcell.00048.2003
  • Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res 1994; 74:376-82; PMID:8118946; http://dx.doi.org/10.1161/01.RES.74.3.376
  • Cepinskas G, Noseworthy R, Kvietys PR. Transendothelial neutrophil migration: role of neutrophil-derived proteases and relationship to transendothelial protein movement. Circ Res 1997; 81:618-26; PMID:9314844; http://dx.doi.org/10.1161/01.RES.81.4.618
  • Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS One 2008; 3:e1649; PMID:18297135
  • Martinelli R, Kamei M, Sage PT, Massol R, Varghese L, Sciuto T, Toporsian M, Dvorak AM, Kirchhausen T, Springer TA, et al. Release of cellular tension signals self-restorative ventral lamellipodia to heal barrier micro-wounds. J Cell Biol 2013; 201:449-65; PMID:23629967; http://dx.doi.org/10.1083/jcb.201209077
  • Lim K, Sumagin R, Hyun YM. Extravasating neutrophil-derived microparticles preserve vascular barrier function in inflamed tissue. Immune Netw 2013; 13:102-06; PMID:23885224; http://dx.doi.org/10.4110/in.2013.13.3.102
  • Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol 2000; 190:255-66; PMID:10685060
  • Jerome SN, Akimitsu T, Korthuis RJ. Leukocyte adhesion, edema, and development of postischemic capillary no-reflow. Am J Physiol 1994; 267:H1329-36; PMID:7943378
  • Tennenberg SD, Weller JJ. Endotoxin-induced, neutrophil-mediated endothelial cytotoxicity is enhanced by T-lymphocytes. J Surg Res 1997; 69:11-3; PMID:9202640; http://dx.doi.org/10.1006/jsre.1996.4996
  • Shigematsu T, Wolf RE, Granger DN. T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. Microcirculation 2002; 9:99-109; PMID:11932777; http://dx.doi.org/10.1080/mic.9.2.99.109
  • Liu M, Chien CC, Grigoryev DN, Gandolfo MT, Colvin RB, Rabb H. Effect of T cells on vascular permeability in early ischemic acute kidney injury in mice. Microvasc Res 2009; 77:340-7; PMID:19323971; http://dx.doi.org/10.1016/j.mvr.2009.01.011
  • Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2009; 137:695-702; PMID:19258091; http://dx.doi.org/10.1016/j.jtcvs.2008.10.044
  • Johnson HL, Chen Y, Jin F, Hanson LM, Gamez JD, Pirko I, Johnson AJ. CD8-T-cell initiated blood brain barrier disruption is independent of neutrophils. J Immunol 2012; 189:1937-45; PMID:22772449; http://dx.doi.org/10.4049/jimmunol.1200658
  • Suidan GL, Mcdole JR, Chen Y, Pirko I, Johnson AJ. Induction of blood-brain barrier tight junction alterations by CD8 T-cells. PLoS One 2008; 3:e3037; PMID:18725947
  • Shinjo K, Tsuda S, Havami T, Asahi T, Kawaharada H. Increase in permeability of human endothelial cell monolayer by recombinant human lymphotoxin. Biochem Biophys Res Comm 1989; 162:1431-7; PMID:2788411; http://dx.doi.org/10.1016/0006-291X(89)90834-6
  • Takata F, Sumi N, Nishioku T, Harada E, Wakigawa T, Shuto H, Yamauchi A, Kataoka Y. Oncostatin M induces functional and structural impairment of blood-brain barriers comprised of rat brain capillary endothelial cells. Neurosci Lett 2008; 441:163-166; PMID:18603369; http://dx.doi.org/10.1016/j.neulet.2008.06.030
  • Repovic P, Mi K, Benveniste EN. Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1beta, tumor necrosis factor-alpha, and bacterial lipopolysaccharide. Glia 2003; 42:433-46; PMID:12730964; http://dx.doi.org/10.1002/glia.10182
  • van Wagoner NJ, Choi C, Repovic P, Benveniste EN. Oncostatin M regulation of interleukin-6 expression in astrocytes: biphasic regulation involving the mitogen-activated protein kinases ERK1/2 and p38. J Neurochem 2000; 75:563-75; PMID:10899931; http://dx.doi.org/10.1046/j.1471-4159.2000.0750563.x
  • Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Brück W, Rieckmann P. Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 2001; 60:1087-98; PMID:11706938
  • Haneda Y, Hasegawa S, Hirano R, Hashimoto K, Ohsaki A, Ichiyama T. Leukotriene D4 enhances tumor necrosis factor-α-induced vascular endothelial growth factor production in human monocytes/macrophages. Cytokine 2011; 55:24-8; PMID:21482134; http://dx.doi.org/10.1016/j.cyto.2011.03.018
  • Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475:222-5; PMID:21654748; http://dx.doi.org/10.1038/nature10138
  • Ong SP, Lee LM, Leong YF, Ng ML, Chu JJ. Dengue virus infection mediates HMBG1 release from monocytes involving PCAF acetylase complex and induces vascular leakage in endothelial cells. PLoS One 2012; 7:e41932; PMID:22860034; http://dx.doi.org/10.1371/journal.pone.0041932.
  • Wakamoto S, Fujhara M, Sakagawa H, Takahashi D, Niwi K, Morioka M, Sato S, Kato T, Azuma H, Ikeda H. Endothelial permeability is increased by the supernatant of peripheral blood mononuclear cells stimulated with HLA Class II antibody. Transfusion 2008; 48:2060-8; PMID:18564388; http://dx.doi.org/10.1111/j.1537-2995.2008.01809.x
  • Haidari M, Zhang W, Chen Z, Ganjehei L, Warier N, Vanderslice P, Dixon R. Myosin light chain phosphorylation facilitates monocyte transendothelial migration by dissociating endothelial adherens junctions. Cardiovasc Res 2011; 92:456-65; PMID:21908648; http://dx.doi.org/10.1093/cvr/cvr240
  • Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, Grau GE. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses. PLoS One 2014; 9(3):e91597; PMID:24646764; http://dx.doi.org/10.1371/journal.pone.0091597
  • Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, Maric D, Fine HA. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood 2006; 107:940-6; PMID:16204319; http://dx.doi.org/10.1182/blood-2004-11-4403
  • Leslie M. Beyond clotting: the powers of platelets. Science 2010; 328:562-4
  • Stokes KY, Granger DN. Platelets: A critical link between inflammation and microvascular dysfunction. J Physiol 2012; 590:1023-34; PMID:22183721
  • Cloutier N, Pare A, Farmdale RW, Schumacher R, Nigrovic PA, Lacroix S, Boilard E. Platelets can enhance vascular permeability. Blood 2012; 120:1334-1343; PMID:22544703; http://dx.doi.org/10.1182/blood-2012-02-413047
  • Ho-Tin-Noe B, Demers M, Wagner DD. How platelets safeguard vascular integrity. J Thromb Haemost 2011; 9:56-65; PMID:21781242; http://dx.doi.org/10.1111/j.1538-7836.2011.04317.x
  • Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood 1975; 46:567-78; PMID:1174690
  • Gimbrone MA Jr, Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 1969; 222:33-36; PMID:5775827; http://dx.doi.org/10.1038/222033a0
  • Schaphorst KL, Chiang E, Jacobs KN, Zaiman A, Natarajan V, Wigley F, Garcia JG. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol 2003; 285:L258-67; PMID:12626332
  • Shepard JM, Moon DG, Sherman PF, Weston LK, Del Vecchio PJ, Minnear FL, Malik AB, Kaplan JE. Platelets decrease albumin permeability of pulmonary artery endothelial cell monolayers. Microvasc Res 1989; 37:256-66; PMID:2733598; http://dx.doi.org/10.1016/0026-2862(89)90044-7
  • Shepro D, Welles SL, Hechtman HB. Vasoactive agonists prevent erythrocyte extravasation in thrombocytopenic hamsters. Thromb Res 1984; 35:421-430; PMID:6484891; http://dx.doi.org/10.1016/0049-3848(84)90234-2
  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos GD. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6:460-3; PMID:10742156; http://dx.doi.org/10.1038/74725
  • Paty PS, Sherman PF, Shepard JM, Malik AB, Kaplan JE. Role of adenosine in platelet-mediated reduction in pulmonary vascular permeability. Am J Physiol 1992; 262:H771-7; PMID:1558187
  • Hänel P, Andréani P, Gräler MH. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 2007; 21:1202-9; PMID:17215483; http://dx.doi.org/10.1096/fj.06-7433com
  • Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 2009; 119:1871-9; PMID:19603543
  • Curry FE, Clark JF, Adamson RH. Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. Am J Physiol Heart Circ Physiol 2012; 303:H825-34; PMID:22865384; http://dx.doi.org/10.1152/ajpheart.00181.2012
  • Polanowska-Grabowska R, Wallace K, Field JJ, Chen L, Marshall MA, Figler R, Gear AR, Linden J. P-selectin mediated platelet-neutrophil aggregate formation activates neutrophils in mouse and human sickle cell disease. Arterioscler Thromb Vasc Biol 2010; 30:2392-9; PMID:21071696; http://dx.doi.org/10.1161/ATVBAHA.110.211615
  • Nagata K, Tsuji T, Todoroki N, Katagiri Y, Tanoue K, Yamazaki H, Hanai N, Irimura T. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62) J Immunol. 1993; 151:3267-73; PMID:7690799
  • Coeffier E, Delautier D, Couedic LeJP, Chignard M, Denizot Y, Benveniste J. Cooperation between platelets and neutrophils for paf-acether (platelet-activating factor) formation. J Leukoc Biol 1990; 47:234-43; PMID:2307906
  • Knezevic II, Predescu SA, Neamu RF, Gorovoy MS, Knezevic NM, Easington C, Malik AB, Predescu DN. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability. J Biol Chem 2009; 284:5381-94; PMID:19095647; http://dx.doi.org/10.1074/jbc.M808958200
  • Schmidt VJ, Wölfle SE, Boettcher M, de Wit C. Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep 2008; 60:68-74; PMID:18276987
  • Michel CC, Curry FE. Microvascular permeability. Physiol Rev 1999; 79:703-61; PMID:10390517
  • Rosenberg GA. Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32:1139-51; PMID:22252235; http://dx.doi.org/10.1038/jcbfm.2011.197
  • Schoknecht K, Shalev H. Blood-brain barrier dysfunction in brain diseases: clinical experience. Epilepsia 2012;53(Suppl 6):7-13; PMID:23134490; http://dx.doi.org/10.1111/j.1528-1167.2012.03697.x
  • Wang L, Patel M, Razavi HM, Weicker S, Joseph MG, McCormack DG, Mehta S. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. Am J Respir Crit Care Med 2002; 165:1634-9; PMID:12070065; http://dx.doi.org/10.1164/rccm.2110017
  • Palmgren MS, deShazo RD, Carter RM, Zimny ML, Shah SV. Mechanisms of neutrophil damage to human alveolar extracellular matrix: the role of serine and metalloproteases. J Allergy Clin Immunol 1992; 89:905-15; PMID:1560171; http://dx.doi.org/10.1016/0091-6749(92)90447-A
  • Dalrymple NA, Mackow ER. Virus interactions with endothelial cell receptors: implications for viral pathogenesis. Curr Opin Virol 2014; 7C:134-40; PMID:25063986; http://dx.doi.org/10.1016/j.coviro.2014.06.006
  • Certikova-Chabova V, Tesar V. Recent insights into the pathogenesis of nephrotic syndrome. Minerva Med 2013; 104:333-47; PMID:23748287
  • Hawkes M, Elphinstone RE, Conroy AL, Kain KC. Contrasting pediatric and adult cerebral malaria: the role of the endothelial barrier. Virulence 2013;4:543-55; PMID:23924893; http://dx.doi.org/10.4161/viru.25949
  • Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 2004; 113:885-94; PMID:15067321; http://dx.doi.org/10.1172/JCI200420702
  • Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U, Feldmann H, Schnittler HJ. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 2005; 79:10442-50; PMID:16051836; http://dx.doi.org/10.1128/JVI.79.16.10442-10450.2005
  • Mackow ER, Gorbunova EE, Dalrymple NA, Gavrilovskaya IN. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches. Lymphat Res Biol 2013; 11:128-35; PMID:24024573; http://dx.doi.org/10.1089/lrb.2013.0006
  • Wang Y, Lewis DF, Alexander JS, Granger DN. Endothelial barrier function in preeclampsia. Front Biosci 2007; 12:2412-24; PMID:17127251; http://dx.doi.org/10.2741/2243
  • Fisher M. Treatment of acute anaphylaxis. BMJ 1995; 311:731-3; PMID:7549690; http://dx.doi.org/10.1136/bmj.311.7007.731
  • Arturson G. Pathophysiology of the burn wound. Ann Chir Gynaecol 1980; 69:178-90; PMID:6162412
  • Eiselein L, Wilson DW, Lamé MW, Rutledge JC. Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis. Am J Physiol Heart Circ Physiol 2007; 292:H2745-53; PMID:17259442; http://dx.doi.org/10.1152/ajpheart.00686.2006
  • Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation 2010; 17:192-205; PMID:20374483; http://dx.doi.org/10.1111/j.1549-8719.2009.00015.x
  • Deng X, Szabo S, Khomenko T, Tolstanova G, Paunovic B, French SW, Sandor Z. Novel pharmacologic approaches to the prevention and treatment of ulcerative colitis. Curr Pharm Des 2013; 19:17-28; PMID:22950505
  • Eringa EC, Serne EH, Meijer RI, Schalkwijk CG, Houben AJ, Stehouwer CD, Smulders YM, van Hinsbergh VW. Endothelial dysfunction in (pre)diabetes: characteristics, causative mechanisms and pathogenic role in type 2 diabetes. Rev Endocr Metab Disord 2013; 14:39-48; PMID:23417760; http://dx.doi.org/10.1007/s11154-013-9239-7
  • Olivieri D, Chetta A. Therapeutic perspectives in vascular remodeling in asthma and chronic obstructive pulmonary disease. Chem Immunol Allergy 2014; 99:216-25; PMID:24217612; http://dx.doi.org/10.1159/000353307
  • Leong CS, Stark P. Thoracic manifestations of sickle cell disease. J Thorac Imaging 1998; 13:128-34; PMID:9556290; http://dx.doi.org/10.1097/00005382-199804000-00008
  • Sauer T, Pedersen MK, Ebeltoft K, Naess O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology. 2005; 16:193-8; PMID:16048505; http://dx.doi.org/10.1111/j.1365-2303.2005.00257.x
  • Tabariès S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, Ferri LE, Omeroglu A, Basik M, Amir E, et al. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol 2012; 32:2979-91; PMID:22645303; http://dx.doi.org/10.1128/MCB.00299-12
  • Walford HH, Zuraw BL. Current update on cellular and molecular mechanisms of hereditary angioedema. Ann Allergy Asthma Immunol 2014; 112:413-8; PMID:24484972; http://dx.doi.org/10.1016/j.anai.2013.12.023
  • McQueen FM, Chan E. Insights into rheumatoid arthritis from use of MRI. Curr Rheumatol Rep 2014; 16:388; PMID:24258615
  • Carmeliet P, De Strooper B. Alzheimer's disease: a breach in the blood-brain barrier. Nature 2012; 485:451-2; PMID:22622564; http://dx.doi.org/10.1038/485451a
  • Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, Pochet R. Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 2009; 1301:152-62; PMID:19748495; http://dx.doi.org/10.1016/j.brainres.2009.09.018
  • Najjar S, Pearlman DM, Devinsky O, Najjar A, Zagzag D. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence. J Neuroinflammation 2013; 10:142; PMID:24289502; http://dx.doi.org/10.1186/1742-2094-10-142
  • Martin GS, Brigham KL. Fluid flux and clearance in acute lung injury. Compr Physiol 2012; 2:2471-80; PMID:23720254
  • Granger DN, Barrowman JA. Microcirculation of the alimentary tract. II. Pathophysiology of edema. Gastroenterology 1983; 84:1035-49; PMID:6339310
  • Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence 2013; 15:525-36; PMID:23841977; http://dx.doi.org/10.4161/viru.25569
  • Heiss WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 2012; 1268:26-34; PMID:22994218; http://dx.doi.org/10.1111/j.1749-6632.2012.06668.x
  • Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011; 42:3323-8; PMID:21940972; http://dx.doi.org/10.1161/STROKEAHA.110.608257
  • Kaneko Y, Tajiri N, Shinozuka K, Glover LE, Weinbren NL, Cortes L, Borlongan CV. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des 2012; 18:3731-4; PMID:22574986; http://dx.doi.org/10.2174/138161212802002733
  • Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D. Dynamic analysis of the blood-brain disruption in experimental stroke using time domain in vivo fluorescence imaging. Mol Imaging 2008; 7:248-62; PMID:19123995
  • Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001; 91:1487-500; PMID:11568129
  • Maybauer MO, Maybauer DM, Enkhbaatar P, Laporte R, Wiśniewska H, Traber LD, Lin C, Fan J, Hawkins HK, Cox RA, et al. The selective vasopressin type 1a receptor agonist selepressin (FE 202158) blocks vascular leak in ovine severe sepsis. Crit Care Med 2014; 42:e525-33; PMID:24674922
  • Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M, Guilbert T, Liebner S, Couraud PO. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J Cereb Blood Flow Metab 2014; 34:433-40; PMID:24346691; texthttp://dx.doi.org/10.1038/jcbfm.2013.213
  • Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J. Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 2011; 6:23; PMID:21426580
  • Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circ Res 2010; 107:943-52; PMID:20947863; http://dx.doi.org/10.1161/CIRCRESAHA.110.223750
  • Dixit M, Bess E, Fisslthaler B, Härtel FV, Noll T, Busse R, Fleming I. Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. Cardiovasc Res 2008; 77:160-8; PMID:18006475; http://dx.doi.org/10.1093/cvr/cvm017
  • Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986; 102:1304-11; PMID:3007533; http://dx.doi.org/10.1083/jcb.102.4.1304
  • Hamann S, Herrera-Perez JJ, Bundgaard M, Varez-Leefmans FJ, Zeuthen T. Water permeability of Na+-K+-2Cl− cotransporters in mammalian epithelial cells. J Physiol 2005; 568:123-35; PMID:16020454; http://dx.doi.org/10.1113/jphysiol.2005.093526
  • Hecquet CM, Ahmmed GU, Malik AB. TRPM2 channel regulates endothelial barrier function. Adv Exp Med Biol 2010; 661:155-67; PMID:20204729; http://dx.doi.org/10.1007/978-1-60761-500-2_10
  • Heisey SR, Held D, Pappenheimer JR. Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 1962; 203:775-81; PMID:13953498
  • Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995; 129:203-17; http://dx.doi.org/10.1083/jcb.129.1.203; PMID:7698986
  • Ma J, Wang P, Liu Y, Zhao L, Li Z, Xue Y. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5. J Cell Physiol 2014; 229:916-26; PMID:24318462; http://dx.doi.org/10.1002/jcp.24523
  • McConnell BB, Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev 2010; 90:1337-81; PMID:20959618; http://dx.doi.org/10.1152/physrev.00058.2009
  • Rehm K, Panzer L, van Vliet V, Genot E, Linder S. Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 2013; 126:3756-69; PMID:23750010; http://dx.doi.org/10.1242/jcs.129437
  • Saadoun S, Bell BA, Verkman AS, Papadopoulos MC. Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. Brain 2008; 131:1087-98; http://dx.doi.org/10.1093/brain/awn014; PMID:18267965
  • Saunders N, Strazielle N, Ghersi-Egea JF. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem. Cell Biol 2012; 138:861-79; PMID:22886143
  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V, Potente M, Daly C, Dimmeler S, Dejana E. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 2008; 10:923-34; PMID:18604199; http://dx.doi.org/10.1038/ncb1752
  • Tawa H, Rikitake Y, Takahashi M, Amano H, Miyata M, Satomi-Kobayashi S, Kinugasa M, Nagamatsu Y, Majima T, Ogita H, et al. Role of afadin in vascular endothelial growth factor- and sphingosine 1-phosphate-induced angiogenesis. Circ Res 2010; 106:1731-42; PMID:20413783; http://dx.doi.org/10.1161/CIRCRESAHA.110.216747
  • Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med 2010; 12:193-204; PMID:19579016; http://dx.doi.org/10.1007/s12017-009-8074-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.