5,166
Views
281
CrossRef citations to date
0
Altmetric
Review

Roles and regulation of the mucus barrier in the gut

, &
Article: e982426 | Received 30 Sep 2014, Accepted 27 Oct 2014, Published online: 25 Feb 2015

References

  • McCracken VJ, Lorenz RG. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 2001; 3:1-11; PMID:11207615; http://dx.doi.org/10.1046/j.1462-5822.2001.00090.x
  • Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 2004; 4:45-60; PMID:14681689; http://dx.doi.org/10.1038/nrc1251
  • Boltin D, Perets TT, Vilkin A, Niv Y. Mucin function in inflammatory bowel disease, an update. J Clin Gastroenterol 2013; 47:106-11; PMID:23164684; http://dx.doi.org/10.1097/MCG.0b013e3182688e73
  • Forstner G. Signal transduction, packaging and secretion of mucins. Annu Rev Physiol 1995; 57:585-605; PMID:7778879; http://dx.doi.org/10.1146/annurev.ph.57.030195.003101
  • Phillips TE, Phillips TH, Neutra MR. Regulation of intestinal goblet cell secretion. III. Isolated intestinal epithelium. Am J Physiol 1984; 247:G674-G681; PMID:6391203
  • Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta 2006; 1765:189-222; PMID:16487661
  • Thai P, Loukoianov A, Wachi S, Wu R. Regulation of airway mucin gene expression. Annu Rev Physiol 2008; 70:405-29; PMID:17961085; http://dx.doi.org/10.1146/annurev.physiol.70.113006.100441
  • Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, et al. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6:e1000902; PMID:20485566
  • Johansson ME, Larsson JM, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci USA 2011; 108:4659-65; PMID:20615996; http://dx.doi.org/10.1073/pnas.1006451107
  • McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, Newberry RD, Miller MJ. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 2012; 483:345-9; PMID:22422267; http://dx.doi.org/10.1038/nature10863
  • Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, He B, Cassis L, Bigas A, Cols M, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013; 342:447-53; PMID:24072822; http://dx.doi.org/10.1126/science.1237910
  • Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 2013; 38(3): 581-95; PMID:23395676; http://dx.doi.org/10.1016/j.immuni.2013.01.009
  • Liévin-Le MV, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006; 19:315-37.
  • Gaskins HR. Immunological aspects of host/microbiota interactions at the intestinal epithelium. In: Mackie RI, White BA, Isaacson RE, eds. Gastrointestinal microbiology 1997; 2:537-587.
  • Barthel M, Hapfelmeier S, Quintanilla-Martínez L, Kremer M, Rohde M, Hogardt M, Pfeffer K, Rüssmann H, Hardt WD. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun 2003; 71:2839-58; PMID:12704158; http://dx.doi.org/10.1128/IAI.71.5.2839-2858.2003
  • Rhee KJ, Cheng H, Harris A, Morin C, Kaper JB, Hecht GA. Determination of spatial and temporal colonization of enteropathogenic E. coli and enterohemorrhagic E. coli in mice using bioluminescent in vivo imaging. Gut Microbes 2011; 2:34-41; PMID:21637016; http://dx.doi.org/10.4161/gmic.2.1.14882
  • Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, Gopinath S, Naidu N, Choudhury B, Weimer BC, Monack DM, et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 2013; 502(7469): 96-9; PMID:23995682; http://dx.doi.org/10.1038/nature12503
  • Ishikawa K, Satoh Y, Oomori Y, Yamano M, Matsuda M, Ono K. Influence of conventionalization on cecal wall structure of germfree Wistar rats: quantitative light and qualitative electron microscopic observations. Anat Embryol (Berl) 1989; 180:191-8; PMID:2802183; http://dx.doi.org/10.1007/BF00309771
  • Kandori H, Hirayama K, Takeda M, Doi K. Histochemical, lectinhistochemical and morphometrical characteristics of intestinal goblet cells of germfree and conventional mice. Exp Anim 1996; 45:155-60; PMID:8726140; http://dx.doi.org/10.1538/expanim.45.155
  • Szentkuti L, Riedesel H, Enss ML, Gaertner K, von Engelhardt W. Pre-epithelial mucus layer in the colon of conventional and germfree rats. Histochem J 1990; 22:491-7; PMID:1702088; http://dx.doi.org/10.1007/BF01007234
  • Enss ML, Grosse-Siestrup H, Schmidt-Wittig U, Gartner K. Changes in colonic mucins of germfree rats in response to the introduction of a “normal” rat microbial flora. Rat colonic mucin. J Exp Anim Sci 1992; 35:110-119; PMID:1295576
  • Sharma R, Schumacher U, Ronaasen V, Coates M. Rat intestinal mucosal responses to a microbial flora and different diets. Gut 1995; 36:209-214; PMID:7883219; http://dx.doi.org/10.1136/gut.36.2.209
  • Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G327-G333; PMID:21109593; http://dx.doi.org/10.1152/ajpgi.00422.2010
  • Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol 1999; 276(4 Pt 1):G941-50; PMID:10198338
  • Tsirtsikos P, Fegeros K, Balaskas C, Kominakis A, Mountzouris KC. Dietary probiotic inclusion level modulates intestinal mucin composition and mucosal morphology in broilers. Poult Sci 2012; 91:1860-8.
  • Berg RD. The indigenous gastrointestinal microflora. Trends Microbiol 1996; 4:430-435; PMID:8950812; http://dx.doi.org/10.1016/0966-842X(96)10057-3
  • Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22:283-307; http://dx.doi.org/10.1146/annurev.nutr.22.011602.092259
  • Awad AB, Kamei A, Horvath PJ, Fink CS. Prostaglandin synthesis in human cancer cells: influence of fatty acids and butyrate. Prostaglandins Leukot Essent Fatty Acids 1995; 53:87-93; PMID:7480078; http://dx.doi.org/10.1016/0952-3278(95)90134-5
  • D’Argenio G, Mazzacca G. Short-chain fatty acid in the human colon. Relation to inflammatory bowel disease and colon cancer. Adv Exp Med Biol 1999; 472:149-158; http://dx.doi.org/10.1007/978-1-4757-3230-6_13
  • Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancie P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut 2000; 46:218-24; PMID:10644316; http://dx.doi.org/10.1136/gut.46.2.218
  • Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I, Renes IB. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J 2009; 13; 2:211-9.
  • Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM. Colonic mucin synthesis is increased by sodium butyrate. Gut 1995; 36:93-9; PMID:7890244; http://dx.doi.org/10.1136/gut.36.1.93
  • Josenhans C, Suerbaum S. The role of motility as a virulence factor in bacteria. Int J Med Microbiol 2002; 291:605-14; PMID:12008914; http://dx.doi.org/10.1078/1438-4221-00173
  • Freter R, Allweiss B, O’Brien PC, Halstead SA, Macsai MS. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. Infec Immun 1981; 34:241-9; PMID:7298186
  • Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J. Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci U S A 2008; 105:9769-74; PMID:18606988; http://dx.doi.org/10.1073/pnas.0802241105
  • Erdem AL, Avelino F, Xicohtencatl-Cortes J, Girón JA. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J Bacteriol 2007; 189:7426-35; PMID:17693516; http://dx.doi.org/10.1128/JB.00464-07
  • Chessa D, Winter MG, Jakomin M, Bäumler AJ. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha(1,2)fucose residues in the cecal mucosa. Mol Microbiol 2009; 71:864-75; PMID:19183274; http://dx.doi.org/10.1111/j.1365-2958.2008.06566.x
  • Weening EH, Barker JD, Laarakker MC, Humphries AD, Tsolis RM, Bäumler AJ. The Salmonella enterica serotype typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 2005; 73:3358-66; PMID:15908362; http://dx.doi.org/10.1128/IAI.73.6.3358-3366.2005
  • Hurd EA, Holmén JM, Hansson GC, Domino SE. Gastrointestinal mucins of Fut2-null mice lack terminal fucosylation without affecting colonization by Candida albicans. Glycobiology 2005; 15:1002-7; PMID:15958416; http://dx.doi.org/10.1093/glycob/cwi089
  • Chadee K, Petri WA, Innes DJ, Ravdin JI. Rat and human colonic mucins bind to and inhibit adherence lectin of Entamoeba histolytica. J Clin Invest 1987; 80:1245-54; PMID:2890655; http://dx.doi.org/10.1172/JCI113199
  • Adler P, Wood SJ, Lee YC, Lee RT, Petri WA, Schnaar RL. High affinity binding of the Entamoeba histolytica lectin to polyvalent n-acetylgalactosaminides. J Biol Chem 1995; 270:5164-71; PMID:7890626; http://dx.doi.org/10.1074/jbc.270.10.5164
  • Roos S, Jonsson H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 2002; 148:433-42; PMID:11832507
  • MacKenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N. Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiology 2010; 156:3368-78; PMID:20847011; http://dx.doi.org/10.1099/mic.0.043265-0
  • MacKenzie DA, Tailford LE, Hemmings AM, Juge N. Crystal structure of a mucus-binding protein repeat reveals an unexpected functional immunoglobulin binding activity. J Biol Chem 2009; 284:32444-53.
  • Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host and Microbe 2007; 2:328-39; PMID:18005754; http://dx.doi.org/10.1016/j.chom.2007.09.013
  • Aleljung P, Shen W, Rozalska B, Hellman U, Ljung AI, Wadstrom T. Purification of collagen binding proteins of Lactobacillus reuteri NCIB 11951. Curr Microbiol 1994; 28:231-6; PMID:7764651; http://dx.doi.org/10.1007/BF01575966
  • Mengaud J, Ohayon H, Gounon P, Mege RM, Cossart P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 1996; 84:923-32; PMID:8601315; http://dx.doi.org/10.1016/S0092-8674(00)81070-3
  • Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 2011; 208:2263-77; PMID:21967767; http://dx.doi.org/10.1084/jem.20110560
  • Porvaznik M, Baker W, Walker RI. Disruption of the goblet cell intercellular junction following histamine infusion of the rabbit ileum. Experientia 1983; 39:514-8; PMID:6852179; http://dx.doi.org/10.1007/BF01965183
  • Coconnier MH, Dlissi E, Robard M, Laboisse CL, Gaillard JL, Servin AL. Listeria monocytogenes stimulates mucus exocytosis in cultured human polarized mucosecreting intestinal cells through action of listeriolysin O. Infect Immun 1998; 66:3673-81; PMID:9673248
  • Liévin-Le Moal V, Huet G, Aubert JP, Bara J, Forgue-Lafitte ME, Servin AL, Coconnier MH. Activation of mucin exocytosis and upregulation of MUC genes in polarized human intestinal mucin-secreting cells by the thiol-activated exotoxin listeriolysin O. Cell Microbiol 2002; 4:515-29; PMID:12174086; http://dx.doi.org/10.1046/j.1462-5822.2002.00210.x
  • Forstner JF, Roomi NW, Fahim RE, Forstner GG. Cholera toxin stimulates secretion of immunoreactive intestinal mucin. Am J Physiol 1981; 240:G10-G16; PMID:7457607
  • Keller K, Olivier M, Chadee K. The fast release of mucin secretion from human colonic cells induced by Entamoeba histolytica is dependent on contact and protein kinase C activation. Arch Med Res 1992; 23:217-21; PMID:1340298
  • Belley A, Keller K, Gottke M, Chadee K. Intestinal mucins in colonization and host defense against pathogens. Am J Trop Med Hyg 1999; 60:10-5; PMID:10344672
  • Kissoon-Singh V, Moreau F, Trusevych E, Chadee K. Entamoeba histolytica exacerbates epithelial tight junction permeability and proinflammatory responses in Muc2(-/-) mice. Am J Pathol 2013; 182:852-65; PMID:23357502; http://dx.doi.org/10.1016/j.ajpath.2012.11.035.
  • Epple HJ, Kreusel KM, Hanski C, Schulzke JD, Riecken EO, Fromm M. Differential stimulation of intestinal mucin secretion by cholera toxin and carbachol. Pflugers Arch Eur J Physiol 1997; 433:638-47; http://dx.doi.org/10.1007/s004240050325
  • Song KS, Lee WJ, Chung KC, Koo JS, Yang EJ, Choi JY, Yoon JH. Interleukin-1 beta and tumor necrosis factor-alpha induce MUC5AC overexpression through a mechanism involving ERK/p38 mitogen-activated protein kinases-MSK1-CREB activation in human airway epithelial cells. J Biol Chem 2003; 278:23243-250; http://dx.doi.org/10.1074/jbc.M300096200
  • Koninkx JF, Mirck MH, Hendriks HG, Mouwen JM, van Dijk JE. Nippostrongylus brasiliensis: histochemical changes in the composition of mucins in goblet cells during infection in rats. Exp Parasitol 1988; 65:84-90; PMID:3338549; http://dx.doi.org/10.1016/0014-4894(88)90109-9
  • Ishikawa N, Horii Y, Nawa Y. Immune-mediated alteration of the terminal sugars of goblet cell mucins in the small intestine of Nippostrongylus brasiliensis-infected rats. Immunology 1993; 78:303-7; PMID:8473019
  • Yamauchi J, Kawai Y, Yamada M, Uchikawa R, Tegoshi T, Arizono N. Altered expression of goblet cell- and mucin glycosylation-related genes in the intestinal epithelium during infection with the nematode Nippostrongylus brasiliensis in rat. APMIS 2006; 114:270-8; PMID:16689826; http://dx.doi.org/10.1111/j.1600-0463.2006.apm_353.x
  • Khan WI, Abe T, Ishikawa N, Nawa Y, Yoshimura K. Reduced amount of intestinal mucus by treatment with anti-CD4 antibody interferes with the spontaneous cure of Nippostrongylus brasiliensis-infection in mice. Parasite Immunol 1995; 17:485-491; PMID:8552418; http://dx.doi.org/10.1111/j.1365-3024.1995.tb00919.x
  • Lawrence RA, Gray CA, Osborne J, Maizels RM. Nippostrongylus brasiliensis: cytokine responses and nematode expulsion in normal and IL-4-deficient mice. Exp Parasitol 1996; 84:65-73; PMID:8888733; http://dx.doi.org/10.1006/expr.1996.0090
  • Urban JF Jr, Noben-Trauth N, Donaldson DD, Madden KB, Morris SC, Collins M, Finkelman FD. IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 1998; 8:255-64; PMID:9492006; http://dx.doi.org/10.1016/S1074-7613(00)80477-X
  • Ishikawa N, Wakelin D, Mahida YR. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology 1997; 113:542-549; PMID:9247474; http://dx.doi.org/10.1053/gast.1997.v113.pm9247474
  • Khan WI, Collins SM. Immune-mediated alteration in gut physiology and its role in host defence in nematode infection. Parasite Immunol 2004; 26:319-26; PMID:15679628; http://dx.doi.org/10.1111/j.0141-9838.2004.00715.x
  • Hasnain SZ, Wang H, Ghia JE, Haq N, Deng Y, Velcich A, Grencis RK, Thornton DJ, Khan WI. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 2010; 138:1763-71; PMID:20138044; http://dx.doi.org/10.1053/j.gastro.2010.01.045
  • Hasnain SZ, Evans CM, Roy M, Gallagher AL, Kindrachuk KN, Barron L, Dickey BF, Wilson MS, Wynn TA, Grencis RK, et al. Muc5ac: a critical component mediating the rejection of enteric nematodes. J Exp Med 2011; 208:893-900
  • Frick LP, Ackert JE. Further studies on duodenal mucus as a factor in age resistance of chickens to parasitism. Frick Ackert J Parasitol 1984; 34:192-206; http://dx.doi.org/10.2307/3273265
  • Kelly CP, Becker S, Linevsky JK, Joshi MA, O’Keane JC, Dickey BF, LaMont JT, Pothoulakis C. Neutrophil recruitment in Clostridium difficile toxin A enteritis in the rabbit. J Clin Invest 1994; 93:1257-65; PMID:7907603; http://dx.doi.org/10.1172/JCI117080
  • Branka JE, Vallette G, Jarry A, Bou-Hanna C, Lemarre P, Phu Nguyen Van, Laboisse CL. Early functional effects of Clostridium difficile toxin A on human colonocytes. Gastroenterology 1997; 112:1887-94; PMID:9178681; http://dx.doi.org/10.1053/gast.1997.v112.pm9178681
  • Morgenstern S, Koren R, Moss SF, Fraser G, Okon E, Niv Y. Does Helicobacter pylori affect gastric mucin expression? Relationship between gastric antral mucin expression and H. pylori colonization. Eur J Gastroenterol Hepatol 2001; 13:19-23; PMID:11204804; http://dx.doi.org/10.1097/00042737-200101000-00004
  • Tanaka S, Mizuno M, Maga T, Yoshinaga F, Tomoda J, Nasu J, Okada H, Yokota K, Oguma K, Shiratori Y, et al. H. pylori decreases gastric mucin synthesis via inhibition of galactosyltransferase. Hepatogastroenterology 2003; 50:1739-42; PMID:14571831
  • Micots I, Augeron C, Laboisse CL, Muzeau F, Mégraud F. Mucin exocytosis: a major target for Helicobacter pylori. J Clin Pathol 1993; 46:241-5.
  • Allen A, Newton J, Oliver L, Jordan N, Strugala V, Pearson JP, Dettmar PW. Mucus and H. pylori. J Physiol Pharmacol 1997; 48:297-305; PMID:9376612
  • Byrd JC, Yunker CK, Xu QS, Sternberg LR, Bresalier RS. Inhibition of gastric mucin synthesis by Helicobacter pylori. Gastroenterology 2000; 118:1072-79; PMID:10833482; http://dx.doi.org/10.1016/S0016-5085(00)70360-X
  • Liau YH, Lopez RA, Slomiany A, Slomiany BL. Helicobacter pylori lipopolysaccharide effect on the synthesis and secretion of gastric sulfomucin, Biochem. Biophys Res Commun 1992; 184:1411-7; http://dx.doi.org/10.1016/S0006-291X(05)80040-3
  • Slomiany BL, Liau YH, Lopez RA, Piotrowski J, Czajkowski A, Slomiany A. Effect of Helicobacter pylori lipopolysaccharide on the synthesis of sulfated gastric mucin. Biochem Int 1992; 27:687-97.
  • Mobley HL, Cortesia MJ, Rosenthal LE, Jones BD. Characterization of urease from Campylobacter pylori. J Clin Microbiol 1988; 26:831-6; PMID:3384908
  • Cao X, Bansil R, Bhaskar KR, Turner BS, LaMont JT, Niu N, Afdhal NH. pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J 1999; 76:1250-8; PMID:10049309; http://dx.doi.org/10.1016/S0006-3495(99)77288-7
  • Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S, Erramilli S. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 2007; 8:1580-6; PMID:17402780; http://dx.doi.org/10.1021/bm0609691
  • Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP, Ewoldt RH, McKinley GH, So P, Erramilli S, et al. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 2009; 106:14321-6; PMID:19706518; http://dx.doi.org/10.1073/pnas.0903438106
  • Kumar P, Luo Q, Vickers TJ, Sheikh F, Lewis WG, Fleckenstein JM. EatA, an immununogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infect Immun 2014; 82:500-8; PMID:24478066; http://dx.doi.org/10.1128/IAI.01078-13
  • Henderson IR, Czeczulin J, Eslava C, Noriega F, Nataro JP. Characterization of pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect Immun 1999; 67:5587-5596; PMID:10531204
  • Harrington SM, Sheikh J, Henderson IR, Ruiz-Perez F, Cohen PS, Nataro JP. The pic protease of enteroaggregative Escherichia coli promotes intestinal colonization and growth in the presence of mucin. Infect Immun 2009; 77:2465-73; PMID:19349428; http://dx.doi.org/10.1128/IAI.01494-08
  • Navarro-Garcia F, Gutierrez-Jimenez J, Garcia-Tovar C, Castro LA, Salazar-Gonzalez H, Cordova V. Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun 2010; 78:4101-9; PMID:20696826; http://dx.doi.org/10.1128/IAI.00523-10
  • Bruchhaus I, Jacobs T, Leippe M, Tannich E. Entamoeba histolytica and Entamoeba dispar: differences in numbers and expression of cysteine proteinase genes. Mol Microbiol 1996; 22:255-63; PMID:8930910; http://dx.doi.org/10.1046/j.1365-2958.1996.00111.x
  • Hidalgo ME, Hernández R, Keene WE, McKerrow JH, Orozco E. Direct relation between secretion of proteolytic enzymes and virulence in Entamoeba histolytica. Archivos de Investigación Médica 1989; 21:133-8.
  • Ankri S, Stolarsky T, Bracha R, Padilla-Vaca F, Mirelman D. Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters. Infect Immun 1998; 67:421-2.
  • Khatri IA, Forstner GG, Forstner JF. Susceptibility of the cysteine-rich N-terminal and C-terminal ends of rat intestinal mucin muc 2 to proteolytic cleavage. Biochem J 1998; 331:323-30; PMID:9512496
  • Lidell ME, Moncada DM, Chadee K, Hansson GC. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel. PNAS 2006; 103:9298-303; PMID:16754877; http://dx.doi.org/10.1073/pnas.0600623103
  • Moncada D, Keller K, Chadee K. Entamoeba histolytica cysteine proteinases disrupt the polymeric structure of colonic mucin and alter its protective function. Infect Immun 2003; 71: 838-44; PMID:12540564; http://dx.doi.org/10.1128/IAI.71.2.838-844.2003
  • North MJ, Mottram JC, Coombs GH. Cysteine proteinases of parasitic protozoa. Parasitol Today 1990; 6:270-5; PMID:15463360; http://dx.doi.org/10.1016/0169-4758(90)90189-B
  • Lehker MW, Sweeney D. Trichomonad invasion of the mucous layer requires adhesins, mucinases, and motility. Sex Transm Infect 1999; 75:231-8; PMID:10615308; http://dx.doi.org/10.1136/sti.75.4.231
  • Rodríguez-Fuentes GB, Cedillo-Rivera R, Fonseca-Liñán R, Argüello-García R, Muñoz O, Ortega-Pierres G, Yépez-Mulia L. Giardia duodenalis: Analysis of secreted proteases upon trophozoite-epithelial cell interaction in vitro. Mem Inst Oswaldo Cruz 2006; 101:693-6; http://dx.doi.org/10.1590/S0074-02762006000600020
  • Larsson JM, Karlsson H, Sjovall H, Hansson GC. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MS. Glycobiology 2009; 19:756-66; PMID:19321523; http://dx.doi.org/10.1093/glycob/cwp048
  • Thomsson KA, Holmén-Larsson JM, Ångström J, Johansson ME V, Xia L, Hansson GC. Detailed O-glycomics of the Muc2 mucin from colon of wild-type, core 1- and core 3-transferase-deficient mice highlights differences compared with human MUC2. Glycobiology 2012; 22:1128-39; PMID:22581805; http://dx.doi.org/10.1093/glycob/cws083
  • Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J 2004; 384:307-16; PMID:15361072; http://dx.doi.org/10.1042/BJ20040605
  • Turck D, Feste AS, Lifschitz CH. Age and diet affect the composition of porcine colonic mucins. Pediatric Res 1993; 33:564-7; PMID:8378112; http://dx.doi.org/10.1203/00006450-199306000-00005
  • Brockhausen I. Sulphotransferases acting on mucin-type oligosaccharides. Biochem Soc Trans 2003; 31:318-25; PMID:12653628; http://dx.doi.org/10.1042/BST0310318
  • Berg JO, Lindqvist L, Andersson G, Nord CE. Neuraminidase in Bacteroides fragilis. Appl Environ Microbial 1983; 46:75-80.
  • An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J, Xia L. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med 2007; 204:1417-29; PMID:17517967; http://dx.doi.org/10.1084/jem.20061929
  • Dawson PA, Huxley S, Gardiner B, Tran T, McAuley JL, Grimmond S, McGuckin MA, Markovich D. Reduced mucin sulfonation and impaired intestinal barrier function in the hyposulfataemic NaS1 null mouse. Gut 2009; 58:910-9; PMID:19201772; http://dx.doi.org/10.1136/gut.2007.147595
  • Boshuizen JA, Reimerink JHJ, Korteland-Van Male AM, Van Ham VJJ, Bouma J, Gerwig GJ, Koopmans MPG, Büller HA, Dekker J, Einerhand AWC. Homeostasis and function of goblet cells during rotavirus infection in mice. Virology 2005; 337:210-1; PMID:15882887; http://dx.doi.org/10.1016/j.virol.2005.03.039
  • Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 2001; 7:167-202; PMID:11581570
  • Dohrman A, Miyata S, Gallup M, Li JD, Chapelin C, Coste A, Escudier E, Nadel J, Basbaum C. Mucin gene (MUC 2 and MUC 5AC) up regulation by Gram-positive and Gram-negative bacteria. Biochim Biophys Acta 1998; 1406:251-259.
  • Smirnova MG, Guo L, Birchall JP, Pearson JP. LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells. Cell Immunol 2003; 221:42-49.
  • McNamara N, Basbaum C. Signaling networks controlling mucin production in response to Gram-positive and Gram-negative bacteria. Glycoconj J 2001; 18:715-722; PMID:12386457; http://dx.doi.org/10.1023/A:1020875423678
  • Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, Basbaum C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A 1998; 95:5718-23; PMID:9576950; http://dx.doi.org/10.1073/pnas.95.10.5718
  • Theodoropoulos G, Carraway KL. Molecular signaling in the regulation of mucins. J Cell Biochem 2007; 102:1103-16; PMID:17957706; http://dx.doi.org/10.1002/jcb.21539
  • Lemjabbar H, Basbaum C. Platelet-activating factor receptor and ADAM10 mediate responses to Staphylococcus aureus in epithelial cells. Nat Med 2002; 8:41-6; PMID:11786905; http://dx.doi.org/10.1038/nm0102-41
  • Seder RA, Paul WE. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 1994; 12:635-73; http://dx.doi.org/10.1146/annurev.iy.12.040194.003223
  • Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev 1996; 9:532-62.
  • Boudny V, Kovarik J. JAK/STAT signaling pathways and cancer. Janus kinases/signal transducers and activators of transcription. Neoplasma 2002; 49:349-55; PMID:12584581
  • Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3:900-911; PMID:14668806; http://dx.doi.org/10.1038/nri1226
  • Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998; 282:2261-3; PMID:9856950; http://dx.doi.org/10.1126/science.282.5397.2261
  • Dabbagh K, Takeyama K, Lee HM, Ueki IF, Lausier JA, Nadel JA. IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo, J. Immunol 1999; 162:6233-7.
  • Shim JJ, Dabbagh K, Takeyama K, Burgel PR, Dao-Pick TP, Ueki IF, Nadel JA. Suplatast tosilate inhibits goblet-cell metaplasia of airway epithelium in sensitized mice. J Allergy Clin Immunol 2000; 105:739-45.
  • Iwashita J, Sato Y, Sugaya H, Takahashi N, Sasaki H, Abe T. mRNA of MUC2 is stimulated by IL-4, IL-13 or TNF-alpha through a mitogen-activated protein kinase pathway in human colon cancer cells. Immunol Cell Biol 2003; 81:275-82; PMID:12848848; http://dx.doi.org/10.1046/j.1440-1711.2003.t01-1-01163.x
  • Blanchard C, Durual S, Estienne M, Bouzakri K, Heim MH, Blin N, Cuber JC. IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J Immunol 2004; 172:3775-83; http://dx.doi.org/10.4049/jimmunol.172.6.3775
  • Jayawickreme SP, Gray T, Nettesheim P, Eling T. Regulation of 15- lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. Am J Physiol 1999; 276:L596-L603.
  • Kondo M, Tamaoki J, Takeyama K, Nakata J, Nagai A. Interleukin-13 induces goblet cell differentiation in primary cell culture from Guinea pig tracheal epithelium. Am J Respir Cell Mol Biol 2002; 27:536-541.
  • Kim CH, Song KS, Koo JS, Kim HU, Cho JY, Kim HJ, Yoon JH. IL-13 suppresses MUC5AC gene expression and mucin secretion in nasal epithelial cells. Acta Otolaryngol 2002; 122:638-43; PMID:12403127
  • Enss ML, Cornberg M, Wagner S, Gebert A, Henrichs M, Eisenblätter R, Beil W, Kownatzki R, Hedrich HJ. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res 2000; 49:162-9; PMID:10858016; http://dx.doi.org/10.1007/s000110050576
  • Louahed J, Toda M, Jen J, Hamid Q, Renauld JC, Levitt RC, Nicolaides NC. Interleukin-9 upregulates mucus expression in the airways, Am. J Respir Cell Mol Biol 2000; 22:649-56; http://dx.doi.org/10.1165/ajrcmb.22.6.3927
  • Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 2008; 118:534-44; PMID:18172556
  • Hasnain SZ, Tauro S, Das I, Tong H, Chen AC, Jeffery PL, McDonald V, Florin TH, McGuckin MA. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 2013; 144:357-68; PMID:23123183; http://dx.doi.org/10.1053/j.gastro.2012.10.043
  • Clark S, McGuckin MA, Hurst T, Ward BG. Effect of interferon-gamma and TNF-alpha on MUC1 mucin expression in ovarian carcinoma cell lines. Dis Markers 1994; 12:43-50; PMID:7842630
  • O’Connor JC, Julian J, Lim SD, Carson DD. MUC1 expression in human prostate cancer cell lines and primary tumors. Prostate Cancer Prostatic Dis 2005; 8:360-44.
  • Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 2009; 1:123-35; PMID:20375571; http://dx.doi.org/10.1159/000163037
  • Jarry A, Merlin D, Velcich A, Hopfer U, Augenlicht LH, Laboisse CL. Interferon-gamma modulates cAMP-induced mucin exocytosis without affecting mucin gene expression in a human colonic goblet cell line. Eur J Pharmacol 1994; 267:95-103; PMID:7515824; http://dx.doi.org/10.1016/0922-4106(94)90229-1
  • Ahn DH, Crawley SC, Hokari R, Kato S, Yang SC, Li JD, Kim YS. TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell Physiol Biochem 2005; 15:29-40; PMID:15665513; http://dx.doi.org/10.1159/000083636
  • Feagins LA, Souza RF, Spechler SJ. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Gastroenterol Hepatol 2009; 6:297-305; PMID:19404270
  • Satsangi J, Parkes M, Louis E, Hashimoto L, Kato N, Welsh K, Terwilliger JD, Lathrop GM, Bell JI, Jewell DP. Two-stage genome-wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12. Nat Genet 1996; 14:199-202; PMID:8841195; http://dx.doi.org/10.1038/ng1096-199
  • Kyo K, Muto T, Nagawa H, Lathrop GM, Nakamura Y. Associations of distinct variants of the intestinal mucin gene MUC3A with ulcerative colitis and Crohn's disease. J Human Genet 2000; 46:5-20; http://dx.doi.org/10.1007/s100380170118
  • Moehle C, Ackermann N, Langmann T, Aslanidis C, Kel A, Kel-Margoulis O, Schmitz-Madry A, Zahn A, Stremmel W, Schmitz G. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med 2006; 84:1055-66; PMID:17058067; http://dx.doi.org/10.1007/s00109-006-0100-2
  • Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, Thornton DJ, Chin WP, Crockford TL, Cornall RJ, et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 2008; 5:0440-60; http://dx.doi.org/10.1371/journal.pmed.0050054
  • Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146:1489-99; PMID:24560869; http://dx.doi.org/10.1053/j.gastro.2014.02.009
  • Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010; 105:2420-8; PMID:20648002; http://dx.doi.org/10.1038/ajg.2010.281
  • Dwarakanath AD, Campbell BJ, Tsai HH, Sunderland D, Hart CA, Rhodes JM. Faecal mucinase activity assessed in inflammatory bowel disease using 14C threonine labelled mucin substrate. Gut 1995; 37:58-62; PMID:7672682; http://dx.doi.org/10.1136/gut.37.1.58
  • Larsson JMH, Karlsson H, Crespo JG, Johansson ME V, Eklund L, Sjövall H, Hansson GC. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis 2011; 17:2299-307; PMID:21290483; http://dx.doi.org/10.1002/ibd.21625
  • Vigsnaes LK, van den Abbeele P, Sulek K, Frandsen HL, Steenholdt C, Brynskov J, Vermeiren J, van de Wiele T, Licht TR. Microbiotas from UC patients display altered metabolism and reduced ability of LAB to colonize mucus. Sci Rep 2013; 3:1110; PMID:23346367; http://dx.doi.org/10.1038/srep01110
  • Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010; 1:254268; http://dx.doi.org/10.4161/gmic.1.4.12778
  • Raouf AH, Tsai HH, Parker N, Hoffman J, Walker RJ, Rhodes JM. Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. Clin Sci (Lond) 1992; 83:623-6; PMID:1335401
  • Kim YS, Ho SB. Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress. Curr Gastroenterol Rep 2010; 12:319-30; PMID:20703838; http://dx.doi.org/10.1007/s11894-010-0131-2
  • Donnellan WL. Early histological changes in ulcerative colitis: a light and electron microscopic study. Gastroenterology 1966; 50:519-40; PMID:5948673
  • McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. Intestinal secretory cell ER stress and Inflammation. Biochem Soc Trans 2011; 39:1081-5; PMID:21787352; http://dx.doi.org/10.1042/BST0391081
  • Shkoda A, Ruiz PA, Daniel H, Kim SC, Rogler G, Sartor RB, Haller D. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 2007; 132:190-207; PMID:17241871; http://dx.doi.org/10.1053/j.gastro.2006.10.030
  • Marciniak SJ, Ron D. Endoplasmic reticulum stress signaling in disease. Physiol Rev 2006; 86:1133-1149; PMID:17015486; http://dx.doi.org/10.1152/physrev.00015.2006
  • Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332:462-4; PMID:3352747; http://dx.doi.org/10.1038/332462a0
  • Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat. Res. 2005; 569:29-63; PMID:15603751; http://dx.doi.org/10.1016/j.mrfmmm.2004.06.056
  • Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum associated degradation. Nat Rev Mol Cell Biol 2008; 9:944-957; PMID:19002207; http://dx.doi.org/10.1038/nrm2546
  • Hosoi T, Ozawa K. Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci (Lond) 2010; 118:19-29.
  • McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G820-G832; PMID:20338921; http://dx.doi.org/10.1152/ajpgi.00063.2010
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115:2656-2664; PMID:16200199; http://dx.doi.org/10.1172/JCI26373
  • Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 2000; 5:897-904; PMID:10882126; http://dx.doi.org/10.1016/S1097-2765(00)80330-5
  • Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23:7448-59; PMID:14559994; http://dx.doi.org/10.1128/MCB.23.21.7448-7459.2003
  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10:3787-99; PMID:10564271; http://dx.doi.org/10.1091/mbc.10.11.3787
  • Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2000; 2:379-84; PMID:10878801; http://dx.doi.org/10.1038/35017001
  • Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO reports 2006; 7:880-5; PMID:16953201; http://dx.doi.org/10.1038/sj.embor.7400779
  • Wei X, Yang Z, Rey FE, Ridaura VK, Davidson NO, Gordon JI, Semenkovich CF. Fatty acid synthase modulates intestinal barrier function through palmitoylation of mucin 2. Cell Host Microbe 2012; 11:140-52; PMID:22341463; http://dx.doi.org/10.1016/j.chom.2011.12.006
  • Park SW, Zhen G, Verhaeghe C, Nakagami Y, Nguyenvu LT, Barczak AJ, Killeen N, Erle DJ. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc Natl Acad Sci USA 2009; 106:6950-55; http://dx.doi.org/10.1073/pnas.0808722106
  • De Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an auto-regulatory role of IL-10 produced by monocytes. J Exp Med 1991; 174:1209-20; PMID:1940799; http://dx.doi.org/10.1084/jem.174.5.1209
  • Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O′Garra A (1991a) IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147:3815-3822; PMID:1940369
  • Hao X, Yao A, Gong J, Zhu W, Li N, Li J. Berberine Ameliorates Pro-inflammatory Cytokine-Induced Endoplasmic Reticulum Stress in Human Intestinal Epithelial Cells In Vitro. Inflammation 2012; 35:841-9; PMID:21922249; http://dx.doi.org/10.1007/s10753-011-9385-6
  • Balzola F, Cullen G, Ho GT, Russell RK. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. Inflamm Bowel Dis Monit 2013; 14:29-30.
  • Lin N-Y, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Ann Rheum Dis 2013; 72:761-8; PMID:22975756; http://dx.doi.org/10.1136/annrheumdis-2012-201671
  • Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS One 2008; 3:1-8; http://dx.doi.org/10.1371/journal.pone.0003391
  • Noda T, Yoshimori T. Molecular basis of canonical and bactericidal autophagy. Int Immunol 2009; 21:1199-204; PMID:19737785; http://dx.doi.org/10.1093/intimm/dxp088
  • Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell KJ, Guan L, Saitoh T, Akira S, Seglen PO, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J. 2013; 32:3130-44; PMID:24185898; http://dx.doi.org/10.1038/emboj.2013.233
  • Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 2010; 11:55-62; PMID:19898471; http://dx.doi.org/10.1038/ni.1823
  • Grenier JM, Wang L, Manji GA, Huang WJ, Al-Garawi A, Kelly R, Carlson A, Merriam S, Lora JM, Briskin M, et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-kappaB and caspase-1. FEBS Lett 2002; 530:73-8; PMID:12387869; http://dx.doi.org/10.1016/S0014-5793(02)03416-6
  • Wlodarska M, Thaiss C, Nowarski A, Henao-Mejia RJ, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156:1045-59; PMID:24581500; http://dx.doi.org/10.1016/j.cell.2014.01.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.