1,453
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Radial glia in the proliferative ventricular zone of the embryonic and adult turtle, Trachemys scripta elegans

, , , &
Article: e970905 | Received 16 Jun 2014, Accepted 26 Sep 2014, Published online: 12 Jan 2015

References

  • Cruce WL, Nieuwenhuys R. The cell masses in the brain stem of the turtle Testudo hermanni; a topographical and topological analysis. J Comp Neurol 1974; 156:277-306; PMID:4418301; http://dx.doi.org/10.1002/cne.901560303
  • Connors BW, Kriegstein AR. Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons. J Neurosci 1986; 6:164-177; PMID:3944618
  • Blanton MG, Shen JM, Kriegstein AR. Evidence for the inhibitory neurotransmitter gamma-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex. J Comp Neurol 1987; 259:277-297; PMID:2438317; http://dx.doi.org/10.1002/cne.902590208
  • Levitt P, Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 1980; 193:815-840; PMID:7002963; http://dx.doi.org/10.1002/cne.901930316
  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 2002; 22:3161-3173; PMID:11943818
  • His W. Die Neuroblasten und deren Entstehung im embryonalen Mark. Abh Kgl sachs Ges Wissensch math phys 1889; 15:311-372.
  • Rakic P. In: Kettenmann H & Ransom BR, eds. Radial gial cells: Scaffolding for brain construction. Neuroglia. Oxford, UK: Oxford University Press, 1995, 746-762.
  • Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 1972; 145:61-83; PMID:4624784; http://dx.doi.org/10.1002/cne.901450105
  • Misson JP, Edwards MA, Yamamoto M, Caviness VS, Jr. Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res 1988; 466:183-190; PMID:3359310; http://dx.doi.org/10.1016/0165-3806(88)90043-0
  • Alvarez-Buylla A, Theelen M, Nottebohm F. Proliferation “hot spots” in adult avian ventricular zone reveal radial cell division. Neuron 1990; 5:101-109; PMID:2369518; http://dx.doi.org/10.1016/0896-6273(90)90038-H
  • Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 2000; 127:5253-5263; PMID:11076748
  • Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 2001; 31:727-741; PMID:11567613; http://dx.doi.org/10.1016/S0896-6273(01)00420-2
  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409:714-720; PMID:11217860; http://dx.doi.org/10.1038/35055553
  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T. Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 2001; 41:51-60; PMID:11535293; http://dx.doi.org/10.1016/S0168-0102(01)00259-0
  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 2004; 7, 136-144pii ; PMID:14703572; http://dx.doi.org/10.1038/nn1172
  • Noctor SC, Martinez-Cerdeno V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 2008; 508:28-44; PMID:18288691; http://dx.doi.org/10.1002/cne.21669
  • Gray GE, Glover JC, Majors J, Sanes JR. Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc Natl Acad Sci U S A 1988; 85:7356-7360; PMID:3174639; http://dx.doi.org/10.1073/pnas.85.19.7356
  • Zikopoulos B, Kentouri M, Dermon CR. Proliferation zones in the adult brain of a sequential hermaphrodite teleost species (Sparus aurata). Brain Behav Evol 2000; 56:310-322; http://dx.doi.org/10.1159/000047215
  • Zupanc GK, Horschke I. Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 1995; 353:213-233; PMID:7745132; http://dx.doi.org/10.1002/cne.903530205
  • Zupanc GK, Zupanc MM. Birth and migration of neurons in the central posterior/prepacemaker nucleus during adulthood in weakly electric knifefish (Eigenmannia sp.). Proc Natl Acad Sci U S A 1992; 89:9539-9543; PMID:1409663; http://dx.doi.org/10.1073/pnas.89.20.9539
  • Ling C, Zuo M, Alvarez-Buylla A, Cheng MF. Neurogenesis in juvenile and adult ring doves. J Comp Neurol 1997; 379:300-312; PMID:9050792; http://dx.doi.org/10.1002/(SICI)1096-9861(19970310)379:2%3c300::AID-CNE10%3e3.0.CO;2-T
  • Ramirez-Castillejo C, Nacher, J, Molowny A, Ponsoda X, Lopez-Garcia C. PSA-NCAM immunocytochemistry in the cerebral cortex and other telencephalic areas of the lizard Podarcis hispanica: differential expression during medial cortex neuronal regeneration. J Comp Neurol 2002; 453:145-156; PMID:12373780; http://dx.doi.org/10.1002/cne.10390
  • Perez-Canellas MM, Garcia-Verdugo JM. Adult neurogenesis in the telencephalon of a lizard: a ; 3Hthymidine autoradiographic and bromodeoxyuridine immunocytochemical study. Brain Res Dev Brain Res 1996; 93:49-61; PMID:8804691; http://dx.doi.org/10.1016/0165-3806(96)00014-4
  • Kalman M. Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anat Embryol (Berl) 1998; 198:409-433; PMID:9801060; http://dx.doi.org/10.1007/s004290050193
  • Yanes C, Monzon-Mayor M, Ghandour MS, de Barry J, Gombos G. Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. J Comp Neurol 1990; 295:559-568; PMID:2358521; http://dx.doi.org/10.1002/cne.902950405
  • Manso MJ, Becerra M, Becerra M, Anadon R. Expression of a low-molecular-weight (10 kDa) calcium binding protein in glial cells of the brain of the trout (Teleostei). Anat Embryol (Berl) 1997; 196:403-416; PMID:9406842; http://dx.doi.org/10.1007/s004290050108
  • Kalman M, Szekely AD, Csillag A. Distribution of glial fibrillary acidic protein and vimentin-immunopositive elements in the developing chicken brain from hatch to adulthood. Anat Embryol (Berl) 1998; 198:213-235; PMID:9764976
  • Mathieu M, Bruzzone F, Chartrel N, Serra GP, Spiga S, Vallarino M, Vaudry H. Somatostatin in the brain of the cave salamander, Hydromantes genei (Amphibia, Plethodontidae): immunohistochemical localization and biochemical characterization. J Comp Neurol 2004; 475:163-176; PMID:15211458; http://dx.doi.org/10.1002/cne.20175
  • Russo RE, Fernandez A, Reali C, Radmilovich M, Trujillo-Cenoz O. Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord. J Physiol 2004; 560:831-838; PMID:15331672; http://dx.doi.org/10.1113/jphysiol.2004.072405
  • Ahboucha S, Laalaoui A, Didier-Bazes M, Montange M, Cooper HM, Gamrani H. Differential patterns of glial fibrillary acidic protein-immunolabeling in the brain of adult lizards. J Comp Neurol 2003; 464:159-171; PMID:12898609; http://dx.doi.org/10.1002/cne.10781
  • Monzon-Mayor M, Yanes C, Renau-Piqueras J. Distribution of neurofilaments in the telencephalon and mesencephalon of the adult and developing Gallotia galloti lizard. Eur J Histochem : EJH 1998; 42:213-226 ; PMID:9857247
  • Bodega G, Suarez I, Rubio M, Fernandez B. Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anat Embryol (Berl) 1990; 181:567-575; PMID:2396756; http://dx.doi.org/10.1007/BF00174628
  • Onteniente B, Kimura H, Maeda T. Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J Comp Neurol 1983; 215:427-436; PMID:6408144; http://dx.doi.org/10.1002/cne.902150407
  • Kalman M, Kiss A, Majorossy K. Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anat Embryol (Berl) 1994; 189:421-434; PMID:7522421; http://dx.doi.org/10.1007/BF00185437
  • Kalman M, Martin-Partido G, Hidalgo-Sanchez M, Majorossy K. Distribution of glial fibrillary acidic protein-immunopositive structures in the developing brain of the turtle Mauremys leprosa. Anat Embryol (Berl) 1997; 196:47-65; PMID:9242888; http://dx.doi.org/10.1007/s004290050079
  • Kriegstein AR, Shen JM, Eshhar N. Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation. J Comp Neurol 1986; 254:330-340; PMID:2432104; http://dx.doi.org/10.1002/cne.902540306
  • Peters A, Palay S, Webster H. The fine strucutre of the nervous system. Oxford, UK: Oxford University Press, 1991.
  • Varon SS, Somjen GG. Neuron-glia interactions. Neurosci Res Prog Bull 1979; 17:1-239; PMID:39273
  • Hajos F, Basco E. The surface-contact glia. Adv Anat Embryol Cell Biol 1984; 84:1-79; PMID:6377846; http://dx.doi.org/10.1007/978-3-642-69623-7_1
  • Kriegstein AR, Shen JM, Eshhar N. Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation. J Comp Neurol 1986; 254:330-340; PMID:2432104; http://dx.doi.org/10.1002/cne.902540306
  • Lazzari M, Franceschini V. Glial fibrillary acidic protein and vimentin immunoreactivity of astroglial cells in the central nervous system of adult Podarcis sicula (Squamata, Lacertidae). J Anat 2001; 198:67-75; PMID:11215769; http://dx.doi.org/10.1046/j.1469-7580.2001.19810067.x
  • Garcia-Verdugo JM, Ferrón S, Flames N, Collado L, Desfilis E, Font E. The proliferative ventricular zone in adult vertebrates: a comparative study using reptiles, birds, and mammals. Brain Res Bull 2002; 57:765-775; PMID:12031273; http://dx.doi.org/10.1016/S0361-9230(01)00769-9
  • Perez-Canellas MM, Font E, Garcia-Verdugo JM. Postnatal neurogenesis in the telencephalon of turtles: evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs. Brain Res Dev Brain Res 1997; 101:125-137; PMID:9263587; http://dx.doi.org/10.1016/S0165-3806(97)00058-8
  • Stensaas LJ, Stensaas SS. Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy. Zeitschrift fur Zellforschung und mikroskopische Anatomie 1968; 84:473-489; PMID:4178203; http://dx.doi.org/10.1007/BF00320863
  • Ebner FF, Colonnier M. Synaptic patterns in the visual cortex of turtle: an electron microscopic study. J Comp Neurol 1975; 160:51-79; PMID:1112922; http://dx.doi.org/10.1002/cne.901600105
  • Connors BW, Ransom BR. Electrophysiological properties of ependymal cells (radial glia) in dorsal cortex of the turtle, Pseudemys scripta. J Physiol 1987; 385:287-306; PMID:3116210
  • Stensaas LJ, Stensaas SS. Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. II. Electron microscopy. Zeitschrift fur Zellforschung und mikroskopische Anatomie 1968; 86:184-213; PMID:5707643; http://dx.doi.org/10.1007/BF00348524
  • Font E, Desfilis E, Perez-Canellas MM, Garcia-Verdugo JM. Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 2001; 58:276-295; PMID:11978946; http://dx.doi.org/10.1159/000057570
  • Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 2003; 13:550-559; PMID:12764028; http://dx.doi.org/10.1093/cercor/13.6.550
  • Zupanc GK. Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 1999; 202 (Pt 10), 1435-1446; PMID:10210684
  • Saito T, Nakatsuji N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 2001; 240:237-246; PMID:11784059; http://dx.doi.org/10.1006/dbio.2001.0439
  • Yntema CL. A series of stages in the embryonic development of Chelydra serpentina. J Morphol 1968; 125:219-251; PMID:5681661; http://dx.doi.org/10.1002/jmor.1051250207
  • Cordery P, Molnar Z. Embryonic development of connections in turtle pallium. J Comp Neurol 1999; 413:26-54; PMID:10464368; http://dx.doi.org/10.1002/(SICI)1096-9861(19991011)413:1%3c26::AID-CNE2%3e3.0.CO;2-N
  • Blanton MG, Kriegstein AR. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex. J Comp Neurol 1991; 310:571-592; PMID:1682348; http://dx.doi.org/10.1002/cne.903100406
  • Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 1998; 125:2099-2111; PMID:9570774
  • Saito T, Fujimoto T, Maegawa S, Inoue K, Tanaka M, Arai K, Yamaha E. Visualization of primordial germ cells in vivo using GFP-nos1 3’UTR mRNA. Int J Dev Biol 2006; 50:691-699; PMID:17051479; http://dx.doi.org/10.1387/ijdb.062143ts
  • Martinez-Cerdeno V, Cunningham CL, Camacho J, Antczak JL, Prakash AN, Cziep ME, Walker AI, Noctor SC. Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS One 2012; 7:e30178; PMID:22272298; http://dx.doi.org/10.1371/journal.pone.0030178
  • Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 2010; 464:554-561; PMID:20154730; http://dx.doi.org/10.1038/nature08845
  • Wang X, Tsai JW, LaMonica B, Kriegstein AR. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 2011; 14:555-561; PMID:21478886; http://dx.doi.org/10.1038/nn.2807
  • Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M. Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia 1998; 23:191-199; PMID:9633804; http://dx.doi.org/10.1002/(SICI)1098-1136(199807)23:3%3c191::AID-GLIA2%3e3.0.CO;2-8
  • Cunningham CL, Martinez-Cerdeno V, Noctor SC. Diversity of neural precursor cell types in the prenatal macaque cerebral cortex exists largely within the astroglial cell lineage. PLoS One 2013; 8:e63848; PMID:23724007; http://dx.doi.org/10.1371/journal.pone.0063848
  • Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 2005; 25:247-251; PMID:15634788; http://dx.doi.org/10.1523/JNEUROSCI.2899-04.2005
  • Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 2010; 13:690-699; PMID:20436478; http://dx.doi.org/10.1038/nn.2553
  • Reillo I, Borrell V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex 2012; 22:2039-2054; PMID:21988826; http://dx.doi.org/10.1093/cercor/bhr284
  • Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 2004; 101:3196-3201; PMID:14963232; http://dx.doi.org/10.1073/pnas.0308600100
  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 2004; 131:3133-3145; PMID:15175243; http://dx.doi.org/10.1242/dev.01173
  • Stensaas LJ, Stensaas SS. Light microscopy of glial cells in turtles and birds. Zeitschrift fur Zellforschung und mikroskopische Anatomie 1968; 91:315-340; PMID:4894065; http://dx.doi.org/10.1007/BF00440762
  • Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002; 22:183-192; PMID:11756501
  • Trujillo-Cenoz O, Fernandez A, Radmilovich M, Reali C, Russo RE. Cytological organization of the central gelatinosa in the turtle spinal cord. J Comp Neurol 2007; 502:291-308; PMID:17348014; http://dx.doi.org/10.1002/cne.21306
  • Cheung AF, Pollen AA, Tavare A, DeProto J, Molnar Z. Comparative aspects of cortical neurogenesis in vertebrates. J Anat 2007; 211:164-176; PMID:17634059; http://dx.doi.org/10.1111/j.1469-7580.2007.00769.x
  • Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V. Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 2008; 60:56-69; pii 10. 1016/j.neuron.2008.09.028 (); PMID:18940588; http://dx.doi.org/10.1016/j.neuron.2008.09.028
  • Martinez-Cerdeno V, Noctor SC, Kriegstein AR. The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 2006; 16:i152-i161; PMID:16766701; http://dx.doi.org/10.1093/cercor/bhk017
  • Alves JA, Barone P, Engelender S, Froes MM, Menezes JR. Initial stages of radial glia astrocytic transformation in the early postnatal anterior subventricular zone. J Neurobiol 2002; 52:251-265; PMID:12210108; http://dx.doi.org/10.1002/neu.10087
  • Choi BH, Lapham LW. Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study. Brain Res 1978; 148:295-311; PMID:77708; http://dx.doi.org/10.1016/0006-8993(78)90721-7
  • Schmechel DE, Rakic P. A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 1979; 156:115-152; PMID:111580
  • Takahashi T, Misson JP, Caviness VS., Jr. Glial process elongation and branching in the developing murine neocortex: a qualitative and quantitative immunohistochemical analysis. J Comp Neurol 1990; 302:15-28; PMID:2086612; http://dx.doi.org/10.1002/cne.903020103
  • Voigt T. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 1989; 289:74-88; PMID:2808761; http://dx.doi.org/10.1002/cne.902890106
  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97:703-716; PMID:10380923; http://dx.doi.org/10.1016/S0092-8674(00)80783-7
  • Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001; 21:7153-7160; PMID:11549726
  • Doetsch F Scharff C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav Evol 2001; 58:306-322; http://dx.doi.org/10.1159/000057572
  • Tramontin AD, Garcia-Verdugo JM, Lim DA, Alvarez-Buylla A. Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 2003; 13:580-587; PMID:12764031; http://dx.doi.org/10.1093/cercor/13.6.580
  • Altman J Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124:319-335; PMID:5861717; http://dx.doi.org/10.1002/cne.901240303
  • Bayer SA, Altman J. Neocortical Development. New York: Raven Press, 1991.
  • Nottebohm F. Neuronal replacement in adult brain. Brain Res Bull 2002; 57:737-749; PMID:12031270; http://dx.doi.org/10.1016/S0361-9230(02)00750-5
  • Font E, Desfilis E, Perez-Canellas M, Alcantara S, Garcia-Verdugo JM. Three-Acetylpyridine-induced degeneration and regeneration in the adult lizard brain: a qualitative and quantitative analysis. Brain Res 1997; 754:245-259; PMID:9134982; http://dx.doi.org/10.1016/S0006-8993(97)00085-1
  • Seki T. Microenvironmental elements supporting adult hippocampal neurogenesis. Anatomical science international 2003; 78:69-78; PMID:12828419; http://dx.doi.org/10.1046/j.0022-7722.2003.00043.x
  • Elias LA, Wang DD, Kriegstein AR. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 2007; 448:901-907; PMID:17713529; http://dx.doi.org/10.1038/nature06063
  • Rakic S, Zecevic N. Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 2003; 13:1072-1083; PMID:12967924; http://dx.doi.org/10.1093/cercor/13.10.1072
  • Alvarez-Buylla A. Mechanism of neurogenesis in adult avian brain. Experientia 1990; 46:948-955; PMID:2209804; http://dx.doi.org/10.1007/BF01939388
  • Zupanc GK. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav Evol 2001; 58:250-275; http://dx.doi.org/10.1159/000057569
  • Stevenson JA, Yoon MG. Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J Comp Neurol 1982; 205:128-138; PMID:7076888; http://dx.doi.org/10.1002/cne.902050204
  • Stevenson JA, Yoon MG. Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1981; 1:862-875; PMID:7346591
  • Rubio M, Suarez I, Bodega G, Fernandez B. Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci Lett 1992; 134:203-206; PMID:1589147; http://dx.doi.org/10.1016/0304-3940(92)90517-B
  • Bodega G, Suarez I, Rubio M, Villalba RM, Fernandez B. Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol (Berl) 1993; 187:385-398; PMID:8512091; http://dx.doi.org/10.1007/BF00185897
  • Wasowicz M, Ward R, Reperant J. An investigation of astroglial morphology in torpedo and scyliorhinus. J Neurocytol 1999; 28:639-653; PMID:10851343; http://dx.doi.org/10.1023/A:1007004714712
  • Chiba A. S-100 protein-immunoreactive structures in the brains of the elasmobranchs Scyliorhinus torazame and Mustelus manazo. Neurosci Lett 2000; 279:65-68; PMID:10670789; http://dx.doi.org/10.1016/S0304-3940(99)00949-0
  • Tomizawa K, Inoue Y, Nakayasu H. A monoclonal antibody stains radial glia in the adult zebrafish (Danio rerio) CNS. J Neurocytol 2000; 29:119-128; PMID:11068340; http://dx.doi.org/10.1023/A:1007156529390
  • Kalman M, Gould RM. GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications. Anat Embryol (Berl) 2001; 204:59-80; PMID:11506433
  • Alvarez-Buylla A, Theelen M, Nottebohm F. Birth of projection neurons in the higher vocal center of the canary forebrain before, during, and after song learning. Proc Natl Acad Sci U S A 1988; 85:8722-8726; PMID:3186755; http://dx.doi.org/10.1073/pnas.85.22.8722
  • Russo RE, Reali C, Radmilovich M, Fernandez A, Trujillo-Cenoz O. Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 2008; 28:3298-3309; PMID:18367597; http://dx.doi.org/10.1523/JNEUROSCI.5736-07.2008
  • Lazzari M, Franceschini V. Glial cytoarchitecture in the central nervous system of the soft-shell turtle, Trionyx sinensis, revealed by intermediate filament immunohistochemistry. Anat Embryol (Berl) 2006; 211:497-506; PMID:16763812; http://dx.doi.org/10.1007/s00429-006-0101-5
  • Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 2000; 418:106-120; PMID:10701759; http://dx.doi.org/10.1002/(SICI)1096-9861(20000228)418:1%3c106::AID-CNE8%3e3.0.CO;2-N
  • Perez-Pinzon MA, Lutz PL, Sick TJ, Rosenthal M. Metabolic mechanisms of anoxia tolerance in the turtle brain. Advances in experimental medicine and biology 1997; 411:75-81; PMID:9269413; http://dx.doi.org/10.1007/978-1-4615-5865-1_9
  • Blanton MG, Kriegstein AR. Morphological differentiation of distinct neuronal classes in embryonic turtle cerebral cortex. J Comp Neurol 1991; 310:558-570; PMID:1719040
  • Hylland P, Nilsson GE, Lutz PL. Time course of anoxia-induced increase in cerebral blood flow rate in turtles: evidence for a role of adenosine. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 1994; 14:877-881; PMID:8063883; http://dx.doi.org/10.1038/jcbfm.1994.110
  • Bar I, Lambert de Rouvroit C, Goffinet AM. The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway. Trends Neurosci 2000; 23:633-638; PMID:11137154; http://dx.doi.org/10.1016/S0166-2236(00)01675-1
  • Gans C, Parsons T. Biology of the Reptilia: Morphology F. New York: Academic Press; 1981.
  • Kalman M, Pritz M. B. Glial fibrillary acidic protein-immunopositive structures in the brain of a Crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J Comp Neurol 2001; 431:460-480; PMID:11223815; http://dx.doi.org/10.1002/1096-9861(20010319)431:4%3c460::AID-CNE1083%3e3.0.CO;2-H