1,125
Views
5
CrossRef citations to date
0
Altmetric
REVIEW

Role of G protein-coupled receptor kinase 2 in tumoral angiogenesis

, , , &
Article: e969166 | Received 16 Jun 2014, Accepted 23 Aug 2014, Published online: 31 Dec 2014

References

  • Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473:298-307; PMID:21593862; http://dx.doi.org/10.1038/nature10144
  • Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011; 17:1359-70; PMID:22064426; http://dx.doi.org/10.1038/nm.2537
  • Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011; 146:873-87; PMID:21925313; http://dx.doi.org/10.1016/j.cell.2011.08.039
  • Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9:1; PMID:24597858; http://dx.doi.org/10.1186/1750-2187-9-1
  • Penela P, Murga C, Ribas C, Lafarga V, Mayor F, Jr. The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br J Pharmacol 2010; 160:821-32; PMID:20590581; http://dx.doi.org/10.1111/j.1476-5381.2010.00727.x
  • Rivas V, Carmona R, Munoz-Chapuli R, Mendiola M, Nogues L, Reglero C, Miguel-Martin M, Garcia-Escudero R, Dorn GW, 2nd, Hardisson D, et al. Developmental and tumoral vascularization is regulated by G protein-coupled receptor kinase 2. J Clin Invest 2013; 123:4714-30; PMID:24135140; http://dx.doi.org/10.1172/JCI67333
  • van Meeteren LA, Goumans MJ, ten Dijke P. TGF-beta receptor signaling pathways in angiogenesis; emerging targets for anti-angiogenesis therapy. Curr Pharm Biotechnol 2011; 12:2108-20; PMID:21619534; http://dx.doi.org/10.2174/138920111798808338
  • Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 2003; 12:817-28; PMID:14580334; http://dx.doi.org/10.1016/S1097-2765(03)00386-1
  • Orlova VV, Liu Z, Goumans MJ, ten Dijke P. Controlling angiogenesis by two unique TGF-beta type I receptor signaling pathways. Histol Histopathol 2011; 26:1219-30; PMID:21751154
  • Tung JJ, Tattersall IW, Kitajewski J. Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med 2012; 2:a006601; PMID:22355796; http://dx.doi.org/10.1101/cshperspect.a006601
  • Bridges E, Oon CE, Harris A. Notch regulation of tumor angiogenesis. Future Oncol 2011; 7:569-88; PMID:21463145; http://dx.doi.org/10.2217/fon.11.20
  • Phng LK, Gerhardt H. Angiogenesis: a team effort coordinated by notch. Dev Cell 2009; 16:196-208; PMID:19217422; http://dx.doi.org/10.1016/j.devcel.2009.01.015
  • Greenberg JI, Shields DJ, Barillas SG, Acevedo LM, Murphy E, Huang J, Scheppke L, Stockmann C, Johnson RS, Angle N, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 2008; 456:809-13; PMID:18997771; http://dx.doi.org/10.1038/nature07424
  • Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Brakenhielm E, Cao Y. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 2007; 117:2766-77; PMID:17909625; http://dx.doi.org/10.1172/JCI32479
  • Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res 2010; 180:103-14; PMID:20033380; http://dx.doi.org/10.1007/978-3-540-78281-0_7
  • Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314:15-23; PMID:12883993; http://dx.doi.org/10.1007/s00441-003-0745-x
  • Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 2003; 17:1835-40; PMID:12897053; http://dx.doi.org/10.1101/gad.266803
  • Taylor LM, Khachigian LM. Induction of platelet-derived growth factor B-chain expression by transforming growth factor-beta involves transactivation by Smads. J Biol Chem 2000; 275:16709-16; PMID:10828062; http://dx.doi.org/10.1074/jbc.275.22.16709
  • Ho J, Cocolakis E, Dumas VM, Posner BI, Laporte SA, Lebrun JJ. The G protein-coupled receptor kinase-2 is a TGFbeta-inducible antagonist of TGFbeta signal transduction. EMBO J 2005;24:3247-3258; PMID:16121194; http://dx.doi.org/10.1038/sj.emboj.7600794
  • David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 2007; 109:1953-61; PMID:17068149; http://dx.doi.org/10.1182/blood-2006-07-034124
  • David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, Plauchu H, Feige JJ, Bailly S. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 2008; 102:914-22; PMID:18309101; http://dx.doi.org/10.1161/CIRCRESAHA.107.165530
  • Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 2003; 12:817-828; PMID:14580334; http://dx.doi.org/10.1016/S1097-2765(03)00386-1
  • Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 2000; 26:328-31; PMID:11062473; http://dx.doi.org/10.1038/81634
  • Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 2000; 97:2626-31; PMID:10716993; http://dx.doi.org/10.1073/pnas.97.6.2626
  • Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, Park A, Wu X, Kaartinen V, Roman BL, et al. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 2008; 111:633-42; PMID:17911384; http://dx.doi.org/10.1182/blood-2007-08-107359
  • Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, Simons M, Eichmann A. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 2012; 22:489-500; PMID:22421041; http://dx.doi.org/10.1016/j.devcel.2012.02.005
  • Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 2006; 444:1032-7; PMID:17183313; http://dx.doi.org/10.1038/nature05355
  • Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 2007; 120:964-72; PMID:17311849; http://dx.doi.org/10.1242/jcs.002949
  • Mallet C, Vittet D, Feige JJ, Bailly S. TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 2006; 24:2420-7; PMID:17071858; http://dx.doi.org/10.1634/stemcells.2005-0494
  • Hall K, Ran S. Regulation of tumor angiogenesis by the local environment. Front Biosci (Landmark Ed) 2010; 15:195-212; PMID:20036815; http://dx.doi.org/10.2741/3615
  • Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S. Catecholamines regulate tumor angiogenesis. Cancer Res 2009; 69:3727-30; PMID:19383906; http://dx.doi.org/10.1158/0008-5472.CAN-08-4289
  • De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE. Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 2007; 28:519-24; PMID:17981504; http://dx.doi.org/10.1016/j.it.2007.09.004
  • Penela P, Ribas C, Mayor F, Jr. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 2003; 15:973-81; PMID:14499340; http://dx.doi.org/10.1016/S0898-6568(03)00099-8
  • Penela P, Murga C, Ribas C, Tutor AS, Peregrin S, Mayor F, Jr. Mechanisms of regulation of G protein-coupled receptor kinases (GRKs) and cardiovascular disease. Cardiovasc Res 2006; 69:46-56; PMID:16288730
  • Ramos-Ruiz R, Penela P, Penn RB, Mayor F, Jr. Analysis of the human G protein-coupled receptor kinase 2 (GRK2) gene promoter: regulation by signal transduction systems in aortic smooth muscle cells. Circulation 2000; 101:2083-9; PMID:10790351; http://dx.doi.org/10.1161/01.CIR.101.17.2083
  • Karagiannis GS, Pavlou MP, Diamandis EP. Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol 2010; 4:496-510; PMID:20934395; http://dx.doi.org/10.1016/j.molonc.2010.09.001
  • Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J Immunol Res 2014; 2014:149185; PMID:24901008; http://dx.doi.org/10.1155/2014/149185
  • Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13:759-71; PMID:24154716; http://dx.doi.org/10.1038/nrc3611
  • Cobelens PM, Kavelaars A, Heijnen CJ, Ribas C, Mayor F, Jr., Penela P. Hydrogen peroxide impairs GRK2 translation via a calpain-dependent and cdk1-mediated pathway. Cell Signal 2007; 19:269-77; PMID:16963227; http://dx.doi.org/10.1016/j.cellsig.2006.06.009
  • Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, et al. Regulation of β-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 2007; 129:511-22; PMID:17482545; http://dx.doi.org/10.1016/j.cell.2007.02.046
  • Lombardi MS, Kavelaars A, Schedlowski M, Bijlsma JW, Okihara KL, Van de Pol M, Ochsmann S, Pawlak C, Schmidt RE, Heijnen CJ. Decreased expression and activity of G-protein-coupled receptor kinases in peripheral blood mononuclear cells of patients with rheumatoid arthritis. FASEB J 1999; 13:715-25; PMID:10094932
  • Lombardi MS, Vroon A, Sodaar P, van Muiswinkel FL, Heijnen CJ, Kavelaars A. Down-regulation of GRK2 after oxygen and glucose deprivation in rat hippocampal slices: role of the PI3-kinase pathway. J Neurochem 2007; 102:731-40; PMID:17437535; http://dx.doi.org/10.1111/j.1471-4159.2007.04576.x
  • Penela P, Elorza A, Sarnago S, Mayor F, Jr. Beta-arrestin- and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 2001; 20:5129-38; PMID:11566877; http://dx.doi.org/10.1093/emboj/20.18.5129
  • Elorza A, Penela P, Sarnago S, Mayor F, Jr. MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem 2003; 278:29164-73; PMID:12738776; http://dx.doi.org/10.1074/jbc.M304314200
  • Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG, Stefanek M, Sood AK. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006; 6:240-8; PMID:16498446; http://dx.doi.org/10.1038/nrc1820
  • Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006; 12:939-44; PMID:16862152; http://dx.doi.org/10.1038/nm1447
  • Cole SW, Sood AK. Molecular pathways: β-adrenergic signaling in cancer. Clin Cancer Res 2012; 18:1201-6; PMID:22186256; http://dx.doi.org/10.1158/1078-0432.CCR-11-0641
  • Hubens LE, Verloop WL, Joles JA, Blankestijn PJ, Voskuil M. Ischemia and reactive oxygen species in sympathetic hyperactivity states: a vicious cycle that can be interrupted by renal denervation? Curr Hypertens Rep 2013; 15:313-20; PMID:23754326; http://dx.doi.org/10.1007/s11906-013-0367-y
  • Harris DM, Cohn HI, Pesant S, Eckhart AD. GPCR signalling in hypertension: role of GRKs. Clin Sci (Lond) 2008; 115:79-89; PMID:18593382; http://dx.doi.org/10.1042/CS20070442
  • Dorn GW, 2nd. GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med (Berl) 2009; 87:455-63; PMID:19229505; http://dx.doi.org/10.1007/s00109-009-0450-7
  • Rengo G, Lymperopoulos A, Leosco D, Koch WJ. GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 2011; 50:785-92; PMID:20800067; http://dx.doi.org/10.1016/j.yjmcc.2010.08.014
  • Mialet-Perez J, Rathz DA, Petrashevskaya NN, Hahn HS, Wagoner LE, Schwartz A, Dorn GW, Liggett SB. Beta1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med 2003; 9:1300-1305; PMID:14502278; http://dx.doi.org/10.1038/nm930
  • Iaccarino G, Ciccarelli M, Sorriento D, Galasso G, Campanile A, Santulli G, Cipolletta E, Cerullo V, Cimini V, Altobelli GG, et al. Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res 2005; 97:1182-9; PMID:16239589; http://dx.doi.org/10.1161/01.RES.0000191541.06788.bb
  • Galasso G, De Rosa R, Ciccarelli M, Sorriento D, Del Giudice C, Strisciuglio T, De Biase C, Luciano R, Piccolo R, Pierri A, et al. beta2-Adrenergic receptor stimulation improves endothelial progenitor cell-mediated ischemic neoangiogenesis. Circ Res 2013; 112:1026-34; PMID:23418295; http://dx.doi.org/10.1161/CIRCRESAHA.111.300152
  • Ji Y, Chen S, Xiao X, Zheng S, Li K. b-blockers: a novel class of antitumor agents. OncoTargets Ther 2012; 5:391-401; PMID:23226026; http://dx.doi.org/10.2147/OTT.S38403
  • Ji Y, Chen S, Li K, Li L, Xu C, Xiang B. Signaling pathways in the development of infantile hemangioma J. Hematol Oncol 2014; 7:13-26; http://dx.doi.org/10.1186/1756-8722-7-13
  • Ji Y, Chen S, Li K, Xiao X, Zheng S Xu T. The role of β-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Division 2013; 8:1-12; PMID:23286511; http://dx.doi.org/10.1186/1747-1028-8-1
  • Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol 2013; 13:595-601; PMID:23773801; http://dx.doi.org/10.1016/j.coph.2013.05.017
  • Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl) 2013; 91:411-29; PMID:23515621; http://dx.doi.org/10.1007/s00109-013-1021-5
  • Biswas SK, Sica A, Lewis CE. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J Immunol 2008; 180:2011-7; PMID:18250403; http://dx.doi.org/10.4049/jimmunol.180.4.2011
  • Laoui D, Movahedi K, Van Overmeire E, Van den Bossche J, Schouppe E, Mommer C, Nikolaou A, Morias Y, De Baetselier P, Van Ginderachter JA. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol 2011; 55:861-7; PMID:22161841; http://dx.doi.org/10.1387/ijdb.113371dl
  • Murdoch C, Giannoudis A, Lewis CE. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004; 104:2224-34; PMID:15231578; http://dx.doi.org/10.1182/blood-2004-03-1109
  • Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 2006; 80:1183-96; PMID:16997855; http://dx.doi.org/10.1189/jlb.0905495
  • Traves SL, Smith SJ, Barnes PJ, Donnelly LE. Specific CXC but not CC chemokines cause elevated monocyte migration in COPD: a role for CXCR2. J Leukoc Biol 2004; 76:441-50; PMID:15155777; http://dx.doi.org/10.1189/jlb.1003495
  • Smith DF, Galkina E, Ley K, Huo Y. GRO family chemokines are specialized for monocyte arrest from flow. Am J Physiol Heart Circ Physiol 2005; 289:H1976-84; PMID:15937099; http://dx.doi.org/10.1152/ajpheart.00153.2005
  • Vroon A, Heijnen CJ, Kavelaars A. GRKs and arrestins: regulators of migration and inflammation. J Leukoc Biol 2006; 80:1214-21; PMID:16943386; http://dx.doi.org/10.1189/jlb.0606373
  • Penela P, Nogues L, Mayor F, Jr. Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 2014; 27:10-7; http://dx.doi.org/10.1016/j.ceb.2013.10.005
  • Arraes SM, Freitas MS, da Silva SV, de Paula Neto HA, Alves-Filho JC, Auxiliadora Martins M, Basile-Filho A, Tavares-Murta BM, Barja-Fidalgo C, Cunha FQ. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood 2006; 108:2906-13; PMID:16849637; http://dx.doi.org/10.1182/blood-2006-05-024638
  • Otten JJ, de Jager SC, Kavelaars A, Seijkens T, Bot I, Wijnands E, Beckers L, Westra MM, Bot M, Busch M, et al. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. FASEB J 2013; 27:265-76; PMID:23047899; http://dx.doi.org/10.1096/fj.12-205351
  • Liu Z, Jiang Y, Li Y, Wang J, Fan L, Scott MJ, Xiao G, Li S, Billiar TR, Wilson MA, et al. TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation. J Immunol 2013; 191:857-64; http://dx.doi.org/10.4049/jimmunol.1300790
  • Ciccarelli M, Sorriento D, Franco A, Fusco A, Del Giudice C, Annunziata R, Cipolletta E, Monti MG, Dorn GW, 2nd, Trimarco B, et al. Endothelial G protein-coupled receptor kinase 2 regulates vascular homeostasis through the control of free radical oxygen species. Arterioscler Thromb Vasc Biol 2013; 33:2415-24; PMID:23950144; http://dx.doi.org/10.1161/ATVBAHA.113.302262
  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005; 8:211-26; PMID:16169466; http://dx.doi.org/10.1016/j.ccr.2005.08.002
  • Aragay AM, Mellado M, Frade JM, Martin AM, Jimenez-Sainz MC, Martinez AC, Mayor F, Jr. Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc Natl Acad Sci U S A 1998; 95:2985-90; PMID:9501202; http://dx.doi.org/10.1073/pnas.95.6.2985
  • Kleibeuker W, Jurado-Pueyo M, Murga C, Eijkelkamp N, Mayor F, Jr., Heijnen CJ, Kavelaars A. Physiological changes in GRK2 regulate CCL2-induced signaling to ERK1/2 and Akt but not to MEK1/2 and calcium. J Neurochem 2008; 104:979-92; PMID:17971124; http://dx.doi.org/10.1111/j.1471-4159.2007.05023.x
  • Patial S, Saini Y, Parvataneni S, Appledorn DM, Dorn GW, 2nd, Lapres JJ, Amalfitano A, Senagore P, Parameswaran N. Myeloid-specific GPCR kinase-2 negatively regulates NF-kappaB1p105-ERK pathway and limits endotoxemic shock in mice. J Cell Physiol 2011; 226:627-37; PMID:20717897; http://dx.doi.org/10.1002/jcp.22384
  • Patial S, Luo J, Porter KJ, Benovic JL, Parameswaran N. G-protein-coupled-receptor kinases mediate TNFalpha-induced NFkappaB signalling via direct interaction with and phosphorylation of IkappaBalpha. Biochem J 2010; 425:169-78; http://dx.doi.org/10.1042/BJ20090908
  • Loniewski K, Shi Y, Pestka J, Parameswaran N. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol Immunol 2008; 45:2312-22; PMID:18180038; http://dx.doi.org/10.1016/j.molimm.2007.11.012
  • Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, Gazzinelli RT, Teixeira MM, Ferreira SH, Cunha FQ. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci U S A 2009; 106:4018-23; PMID:19234125; http://dx.doi.org/10.1073/pnas.0900196106
  • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: "N1" versus "N2" TAN. Cancer Cell 2009; 16:183-94; PMID:19732719; http://dx.doi.org/10.1016/j.ccr.2009.06.017
  • Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA, Jr., Auxiliadora-Martins M, Basile-Filho A, McKenzie AN, Xu D, Cunha FQ, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med 2010; 16:708-12; PMID:20473304; http://dx.doi.org/10.1038/nm.2156
  • Garcia-Guerra L, Nieto-Vazquez I, Vila-Bedmar R, Jurado-Pueyo M, Zalba G, Diez J, Murga C, Fernandez-Veledo S, Mayor F, Jr., Lorenzo M. G protein-coupled receptor kinase 2 plays a relevant role in insulin resistance and obesity. Diabetes 2010; 59:2407-17; PMID:20627936; http://dx.doi.org/10.2337/db10-0771
  • Richard DE, Vouret-Craviari V, Pouyssegur J. Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene 2001; 20:1556-62; PMID:11313902; http://dx.doi.org/10.1038/sj.onc.1204193
  • Woerner BM, Luo J, Brown KR, Jackson E, Dahiya SM, Mischel P, Benovic JL, Piwnica-Worms D, Rubin JB. Suppression of G-protein-coupled receptor kinase 3 expression is a feature of classical GBM that is required for maximal growth. Mol Cancer Res 2012; 10:156-66; PMID:22086906; http://dx.doi.org/10.1158/1541-7786.MCR-11-0411
  • Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M, Signoretti S, Hu Y, Boyce FM, Gravdal K, et al. GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci U S A 2014; 111:1521-6.
  • Sorriento D, Ciccarelli M, Santulli G, Campanile A, Altobelli GG, Cimini V, Galasso G, Astone D, Piscione F, Pastore L, et al. The G-protein-coupled receptor kinase 5 inhibits NFkappaB transcriptional activity by inducing nuclear accumulation of IkappaB alpha. Proc Natl Acad Sci U S A 2008; 105:17818-23; PMID:19008357; http://dx.doi.org/10.1073/pnas.0804446105
  • Sorriento D, Campanile A, Santulli G, Leggiero E, Pastore L, Trimarco B, Iaccarino G. A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFkappaB activity. Mol Cancer 2009; 8:97; PMID:19900276; http://dx.doi.org/10.1186/1476-4598-8-97
  • Raghuwanshi SK, Smith N, Rivers EJ, Thomas AJ, Sutton N, Hu Y, Mukhopadhyay S, Chen XL, Leung T, Richardson RM. G protein-coupled receptor kinase 6 deficiency promotes angiogenesis, tumor progression, and metastasis. J Immunol 2013; 190:5329-36; PMID:23589623; http://dx.doi.org/10.4049/jimmunol.1202058
  • Miyake M, Goodison S, Urquidi V, Gomes Giacoia E, Rosser CJ. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest 2013; 93:768-78; PMID:23732813; http://dx.doi.org/10.1038/labinvest.2013.71
  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91:1071-121; PMID:21742796; http://dx.doi.org/10.1152/physrev.00038.2010
  • Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10:417-27; PMID:21629292; http://dx.doi.org/10.1038/nrd3455
  • Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2012; 2:a006593; PMID:23209176
  • Cunha SI, Pietras K. ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood 2011; 117:6999-7006; PMID:21467543; http://dx.doi.org/10.1182/blood-2011-01-330142
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860-7; PMID:12490959; http://dx.doi.org/10.1038/nature01322
  • Pousa ID, Mate J, Gisbert JP. Angiogenesis in inflammatory bowel disease. Eur J Clin Invest 2008; 38:73-81; PMID:18226040; http://dx.doi.org/10.1111/j.1365-2362.2007.01914.x