1,429
Views
11
CrossRef citations to date
0
Altmetric
REVIEW

The next new target in leukemia: The embryonic stem cell gene SALL4

, , , &
Article: e969169 | Received 19 Jun 2014, Accepted 28 Aug 2014, Published online: 31 Dec 2014

References

  • Kohlhase J, Schuh R, Dowe G, Kuhnlein RP, Jackle H, Schroeder B, Schulz-Schaeffer W, Kretzschmar HA, Kohler A, Muller U, et al. Isolation, characterization, and organ-specific expression of two novel human zinc finger genes related to the Drosophila gene spalt. Genomics 1996; 38:291-8; PMID:8975705; http://dx.doi.org/10.1006/geno.1996.0631
  • van den Berg DL, Snoek T, Mullin NP, Yates A, Bezstarosti K, Demmers J, Chambers I, Poot RA. An Oct4-centered protein interaction network in embryonic stem cells. Cell Stem Cell 2010; 6:369-81; PMID:20362541; http://dx.doi.org/10.1016/j.stem.2010.02.014
  • Yang J, Gao C, Chai L, Ma Y. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One 2010; 5:e10766; PMID:20505821; http://dx.doi.org/10.1371/journal.pone.0010766
  • Zhang J, Tam WL, Tong GQ, Wu Q, Chan HY, Soh BS, Lou Y, Yang J, Ma Y, Chai L, et al. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 2006; 8:1114-23; PMID:16980957; http://dx.doi.org/10.1038/ncb1481
  • Zhao W, Ji X, Zhang F, Li L, Ma L. Embryonic stem cell markers. Molecules 2012; 17:6196-236; PMID:22634835; http://dx.doi.org/10.3390/molecules17066196
  • Yuri S, Fujimura S, Nimura K, Takeda N, Toyooka Y, Fujimura Y, Aburatani H, Ura K, Koseki H, Niwa H, et al. Sall4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells 2009; 27:796-805; PMID:19350679; http://dx.doi.org/10.1002/stem.14
  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013; 341:651-4; PMID:23868920; http://dx.doi.org/10.1126/science.1239278
  • Wong CC, Gaspar-Maia A, Ramalho-Santos M, Reijo Pera RA. High-efficiency stem cell fusion-mediated assay reveals Sall4 as an enhancer of reprogramming. PLoS One 2008; 3:e1955; PMID:18414659; http://dx.doi.org/10.1371/journal.pone.0001955
  • Parchem RJ, Ye J, Judson RL, Larussa MF, Krishnakumar R, Blelloch A, Oldham MC, Blelloch R. Two miRNA clusters reveal alternative paths in late-stage reprogramming. Cell Stem Cell 2014; 14:617-31; PMID:24630794; http://dx.doi.org/10.1016/j.stem.2014.01.021
  • Borozdin W, Graham JM Jr, Bohm D, Bamshad MJ, Spranger S, Burke L, Leipoldt M, Kohlhase J. Multigene deletions on chromosome 20q13.13-q13.2 including SALL4 result in an expanded phenotype of Okihiro syndrome plus developmental delay. Hum Mutat 2007; 28:830; PMID:17623483; http://dx.doi.org/10.1002/humu.9502
  • Paradisi I, Arias S. IVIC syndrome Is caused by a c.2607delA mutation in the SALL4 locus. Am J Med Genet A 2007; 143:326-32; PMID:17256792; http://dx.doi.org/10.1002/ajmg.a.31603
  • Basson CT, Cowley GS, Solomon SD, Weissman B, Poznanski AK, Traill TA, Seidman JG, Seidman CE. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome). N Engl J Med 1994; 330:885-91; PMID:8114858; http://dx.doi.org/10.1056/NEJM199403313301302
  • Koshiba-Takeuchi K, Takeuchi JK, Arruda EP, Kathiriya IS, Mo R, Hui CC, Srivastava D, Bruneau BG. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet 2006; 38:175-83; PMID:16380715; http://dx.doi.org/10.1038/ng1707
  • Warren M, Wang W, Spiden S, Chen-Murchie D, Tannahill D, Steel KP, Bradley A. A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis. Genesis 2007; 45:51-8; PMID:17216607; http://dx.doi.org/10.1002/dvg.20264
  • Eildermann K, Aeckerle N, Debowski K, Godmann M, Christiansen H, Heistermann M, Schweyer S, Bergmann M, Kliesch S, Gromoll J, et al. Developmental expression of the pluripotency factor sal-like protein 4 in the monkey, human and mouse testis: restriction to premeiotic germ cells. Cells Tissues Organs 2012; 196:206-20; PMID:22572102; http://dx.doi.org/10.1159/000335031
  • Miettinen M, Wang Z, McCue PA, Sarlomo-Rikala M, Rys J, Biernat W, Lasota J, Lee YS. SALL4 expression in germ cell and non-germ cell tumors: a systematic immunohistochemical study of 3215 cases. Am J Surg Pathol 2014; 38:410-20; PMID:24525512; http://dx.doi.org/10.1097/PAS.0000000000000116
  • Cao D, Guo S, Allan RW, Molberg KH, Peng Y. SALL4 is a novel sensitive and specific marker of ovarian primitive germ cell tumors and is particularly useful in distinguishing yolk sac tumor from clear cell carcinoma. Am J Surg Pathol 2009; 33:894-904; PMID:19295406; http://dx.doi.org/10.1097/PAS.0b013e318198177d
  • Kohlhase J, Heinrich M, Liebers M, Frohlich Archangelo L, Reardon W, Kispert A. Cloning and expression analysis of SALL4, the murine homologue of the gene mutated in Okihiro syndrome. Cytogenet Genome Res 2002; 98:274-7; PMID:12826753; http://dx.doi.org/10.1159/000071048
  • Cao D, Li J, Guo CC, Allan RW, Humphrey PA. SALL4 is a novel diagnostic marker for testicular germ cell tumors. Am J Surg Pathol 2009; 33:1065-77; PMID:19390421; http://dx.doi.org/10.1097/PAS.0b013e3181a13eef
  • Chai L. The role of HSAL (SALL) genes in proliferation and differentiation in normal hematopoiesis and leukemogenesis. Transfusion 2011; 51 Suppl 4:87S-93S; PMID:22074632; http://dx.doi.org/10.1111/j.1537-2995.2011.03371.x
  • Gao C, Kong NR, Li A, Tatetu H, Ueno S, Yang Y, He J, Yang J, Ma Y, Kao GS, et al. SALL4 is a key transcription regulator in normal human hematopoiesis. Transfusion 2013; 53:1037-49; PMID:22934838; http://dx.doi.org/10.1111/j.1537-2995.2012.03888.x
  • Cui W, Kong NR, Ma Y, Amin HM, Lai R, Chai L. Differential expression of the novel oncogene, SALL4, in lymphoma, plasma cell myeloma, and acute lymphoblastic leukemia. Mod Pathol 2006; 19:1585-92; PMID:16998462; http://dx.doi.org/10.1038/modpathol.3800694
  • Lu J, Ma Y, Kong N, Alipio Z, Gao C, Krause DS, Silberstein LE, Chai L. Dissecting the role of SALL4, a newly identified stem cell factor, in chronic myelogenous leukemia. Leukemia 2011; 25:1211-3; PMID:21468036; http://dx.doi.org/10.1038/leu.2011.65
  • Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, Lai R, Ritz J, Krause DS, Chai L. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 2006; 108:2726-35; PMID:16763212; http://dx.doi.org/10.1182/blood-2006-02-001594
  • Ueno S, Lu J, He J, Li A, Zhang X, Ritz J, Silberstein LE, Chai L. Aberrant expression of SALL4 in acute B cell lymphoblastic leukemia: Mechanism, function, and implication for a potential novel therapeutic target. Exp Hematol 2014; 42:307-16 e8; PMID:24463278; http://dx.doi.org/10.1016/j.exphem.2014.01.005
  • Wang F, Guo Y, Chen Q, Yang Z, Ning N, Zhang Y, Xu Y, Xu X, Tong C, Chai L, et al. Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes. J Hematol Oncol 2013; 6:73; PMID:24283704; http://dx.doi.org/10.1186/1756-8722-6-73
  • Jeong HW, Cui W, Yang Y, Lu J, He J, Li A, Song D, Guo Y, Liu BH, Chai L. SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes. PLoS One 2011; 6:e18372; PMID:21526180; http://dx.doi.org/10.1371/journal.pone.0018372
  • Yong KJ, Gao C, Lim JS, Yan B, Yang H, Dimitrov T, Kawasaki A, Ong CW, Wong KF, Lee S, et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med 2013; 368:2266-76; PMID:23758232; http://dx.doi.org/10.1056/NEJMoa1300297
  • Zeng SS, Yamashita T, Kondo M, Nio K, Hayashi T, Hara Y, Nomura Y, Yoshida M, Hayashi T, Oishi N, et al. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma. J Hepatol 2014; 60:127-34; PMID:24012616; http://dx.doi.org/10.1016/j.jhep.2013.08.024
  • Oikawa T, Kamiya A, Zeniya M, Chikada H, Hyuck AD, Yamazaki Y, Wauthier E, Tajiri H, Miller LD, Wang XW, et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology 2013; 57:1469-83; PMID:23175232; http://dx.doi.org/10.1002/hep.26159
  • Zhang L, Xu Z, Xu X, Zhang B, Wu H, Wang M, Zhang X, Yang T, Cai J, Yan Y, et al. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene 2013; 33(48):5491-500; PMID:24276240; doi: 10.1038/onc.2013.495
  • Kobayashi D, Kuribayashi K, Tanaka M, Watanabe N. Overexpression of SALL4 in lung cancer and its importance in cell proliferation. Oncol Rep 2011; 26:965-70; PMID:21725617
  • Li A, Jiao Y, Yong KJ, Wang F, Gao C, Yan B, Srivastava S, Lim GS, Tang P, Yang H, et al. SALL4 is a new target in endometrial cancer. Oncogene 2013; PMID:24336327; doi: 10.1038/onc.2013.529
  • Kobayashi D, Kuribayshi K, Tanaka M, Watanabe N. SALL4 is essential for cancer cell proliferation and is overexpressed at early clinical stages in breast cancer. Int J Oncol 2011; 38:933-9; PMID:21274508
  • Itou J, Matsumoto Y, Yoshikawa K, Toi M. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer. FEBS Lett 2013; 587:3115-21; PMID:23954296; http://dx.doi.org/10.1016/j.febslet.2013.07.049
  • List AF. Emerging data on IMiDs in the treatment of myelodysplastic syndromes (MDS). Semin Oncol 2005; 32:S31-5; PMID:16085015; http://dx.doi.org/10.1053/j.seminoncol.2005.06.020
  • Hofmann WK, Koeffler HP. Myelodysplastic syndrome. Annu Rev Med 2005; 56:1-16; PMID:15660498; http://dx.doi.org/10.1146/annurev.med.56.082103.104704
  • Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol 2011; 29:504-15; PMID:21220588; http://dx.doi.org/10.1200/JCO.2010.31.1175
  • Nimer SD. Myelodysplastic syndromes. Blood 2008; 111:4841-51; PMID:18467609; http://dx.doi.org/10.1182/blood-2007-08-078139
  • Sekeres MA. The myelodysplastic syndromes. Expert Opin Biol Ther 2007; 7:369-77; PMID:17309328; http://dx.doi.org/10.1517/14712598.7.3.369
  • List AF, Vardiman J, Issa JP, DeWitte TM. Myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program 2004:297-317; PMID:15561689; http://dx.doi.org/10.1182/asheducation-2004.1.297
  • Bohm J, Sustmann C, Wilhelm C, Kohlhase J. SALL4 is directly activated by TCF/LEF in the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2006; 348:898-907; PMID:16899215; http://dx.doi.org/10.1016/j.bbrc.2006.07.124
  • Young JJ, Kjolby RA, Kong NR, Monica SD, Harland RM. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 2014; 141:1683-93; PMID:24715458; http://dx.doi.org/10.1242/dev.099374
  • Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R. Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. Faseb J 2009; 23:1405-14; PMID:19151334; http://dx.doi.org/10.1096/fj.08-117721
  • Lin J, Qian J, Yao DM, Qian W, Yang J, Wang CZ, Chai HY, Ma JC, Deng ZQ, Li Y, et al. Aberrant hypomethylation of SALL4 gene in patients with myelodysplastic syndrome. Leuk Res 2013; 37:71-5; PMID:23122807; http://dx.doi.org/10.1016/j.leukres.2012.10.014
  • Ma JC, Qian J, Lin J, Qian W, Yang J, Wang CZ, Chai HY, Li Y, Chen Q, Qian Z. Aberrant hypomethylation of SALL4 gene is associated with intermediate and poor karyotypes in acute myeloid leukemia. Clin Biochem 2013; 46:304-7; PMID:23201546; http://dx.doi.org/10.1016/j.clinbiochem.2012.11.018
  • Aguila JR, Liao W, Yang J, Avila C, Hagag N, Senzel L, Ma Y. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood 2011; 118:576-85; PMID:21602528; http://dx.doi.org/10.1182/blood-2011-01-333641
  • Li A, Yang Y, Gao C, Lu J, Jeong HW, Liu BH, Tang P, Yao X, Neuberg D, Huang G, et al. A SALL4/MLL/HOXA9 pathway in murine and human myeloid leukemogenesis. J Clin Invest 2013; 123:4195-207; PMID:24051379; http://dx.doi.org/10.1172/JCI62891
  • Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, Xu D, Fink LM, Ward DC, Ma Y. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood 2008; 112:805-13; PMID:18487508; http://dx.doi.org/10.1182/blood-2007-11-126326
  • Lim CY, Tam WL, Zhang J, Ang HS, Jia H, Lipovich L, Ng HH, Wei CL, Sung WK, Robson P, et al. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 2008; 3:543-54; PMID:18804426; http://dx.doi.org/10.1016/j.stem.2008.08.004
  • Simon M, Grandage VL, Linch DC, Khwaja A. Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24:2410-20; PMID:15735743; http://dx.doi.org/10.1038/sj.onc.1208431
  • Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423:409-14; PMID:12717450; http://dx.doi.org/10.1038/nature01593
  • Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005; 434:843-50; PMID:15829953; http://dx.doi.org/10.1038/nature03319
  • Raaphorst FM. Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol 2003; 24:522-4; PMID:14552834; http://dx.doi.org/10.1016/S1471-4906(03)00241-2
  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302-5; PMID:12714971; http://dx.doi.org/10.1038/nature01587
  • Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Ema H, Kamijo T, Katoh-Fukui Y, Koseki H, et al. Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 2004; 21:843-51; PMID:15589172; http://dx.doi.org/10.1016/j.immuni.2004.11.004
  • Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE, Amin HM, Ward DC, Ma Y. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci U S A 2007; 104:10494-9; PMID:17557835; http://dx.doi.org/10.1073/pnas.0704001104
  • Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE. Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13:687-98; PMID:10374871; http://dx.doi.org/10.1038/sj.leu.2401410
  • Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, Largman C. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89:1922-30; PMID:9058712
  • Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M, Zwaan CM, Kung AL, Armstrong SA. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113:2375-85; PMID:19056693; http://dx.doi.org/10.1182/blood-2007-09-113597
  • Lauberth SM, Rauchman M. A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J Biol Chem 2006; 281:23922-31; PMID:16707490; http://dx.doi.org/10.1074/jbc.M513461200
  • Hong W, Nakazawa M, Chen YY, Kori R, Vakoc CR, Rakowski C, Blobel GA. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. Embo J 2005; 24:2367-78; PMID:15920470; http://dx.doi.org/10.1038/sj.emboj.7600703
  • Lu J, Jeong HW, Kong N, Yang Y, Carroll J, Luo HR, Silberstein LE, Yupoma, Chai L. Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS One 2009; 4:e5577; PMID:19440552; http://dx.doi.org/10.1371/journal.pone.0005577
  • Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, Haug JS, Rupp D, Porter-Westpfahl KS, Wiedemann LM, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441:518-22; PMID:16633340; http://dx.doi.org/10.1038/nature04747
  • Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13:1203-10; PMID:17873882; http://dx.doi.org/10.1038/nm1636
  • Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC, Kung AL, Gilliland DG, Verdine GL, Bradner JE. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462:182-8; PMID:19907488; http://dx.doi.org/10.1038/nature08543
  • Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146:904-17; PMID:21889194; http://dx.doi.org/10.1016/j.cell.2011.08.017
  • Cerchietti LC, Ghetu AF, Zhu X, Da Silva GF, Zhong S, Matthews M, Bunting KL, Polo JM, Fares C, Arrowsmith CH, et al. A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell 2010; 17:400-11; PMID:20385364
  • Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, Bradner JE, Tenen DG, Chai L. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood 2013; 121:1413-21; PMID:23287862; http://dx.doi.org/10.1182/blood-2012-04-424275