926
Views
27
CrossRef citations to date
0
Altmetric
Research Paper

Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

, , , &
Pages 49-57 | Received 12 Dec 2012, Accepted 03 Jul 2013, Published online: 01 Apr 2013

References

  • Paterson BM, Roberts BE, Kuff EL. Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci U S A 1977; 74:4370 - 4; http://dx.doi.org/10.1073/pnas.74.10.4370; PMID: 270678
  • Nielsen PE. Peptide nucleic acid. A molecule with two identities. Acc Chem Res 1999; 32:624 - 30; http://dx.doi.org/10.1021/ar980010t
  • Stein CA. Keeping the biotechnology of antisense in context. Nat Biotechnol 1999; 17:209; http://dx.doi.org/10.1038/6909; PMID: 10096271
  • Juliano RL, Yoo H. Aspects of the transport and delivery of antisense oligonucleotides. Curr Opin Mol Ther 2000; 2:297 - 303; PMID: 11249624
  • Deere J, Iversen P, Geller BL. Antisense phosphorodiamidate morpholino oligomer length and target position effects on gene-specific inhibition in Escherichia coli. Antimicrob Agents Chemother 2005; 49:249 - 55; http://dx.doi.org/10.1128/AAC.49.1.249-255.2005; PMID: 15616302
  • Summerton J, Stein D, Huang SB, Matthews P, Weller D, Partridge M. Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 1997; 7:63 - 70; http://dx.doi.org/10.1089/oli.1.1997.7.63; PMID: 9149841
  • Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R, Meldgaard M, et al. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998; 54:3607 - 30; http://dx.doi.org/10.1016/S0040-4020(98)00094-5
  • Nielsen PE, Egholm M, Berg RH, Buchardt O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991; 254:1497 - 500; http://dx.doi.org/10.1126/science.1962210; PMID: 1962210
  • Winssinger N, Ficarro S, Schultz PG, Harris JL. Profiling protein function with small molecule microarrays. Proc Natl Acad Sci U S A 2002; 99:11139 - 44; http://dx.doi.org/10.1073/pnas.172286899; PMID: 12167675
  • Debaene F, Da Silva JA, Pianowski Z, Duran FJ, Winssinger N. Expanding the scope of PNA-encoded libraries: divergent synthesis of libraries targeting cysteine, serine and metalloproteases as well as tyrosine phosphatases. Tetrahedron 2007; 63:6577 - 86; http://dx.doi.org/10.1016/j.tet.2007.03.033
  • Egholm M, Buchardt O, Nielsen PE, Berg RH. Peptide Nucleic-Acids (Pna) - Oligonucleotide Analogs with an Achiral Peptide Backbone. J Am Chem Soc 1992; 114:1895 - 7; http://dx.doi.org/10.1021/ja00031a062
  • Boyarskaya NP, Kirillova YG, Stotland EA, Prokhorov DI, Zvonkova EN, Shvets VI. Synthesis of two new thymine-containing negatively charged PNA monomers. Dokl Chem 2006; 408:57 - 60; http://dx.doi.org/10.1134/S0012500806050016
  • Hudson RHE, Liu YH, Wojciechowski F. Hydrophilic modifications in peptide nucleic acid - Synthesis and properties of PNA possessing 5-hydroxymethyluracil and 5-hydroxymethylcytosine. Can J Chem 2007; 85:302 - 12; http://dx.doi.org/10.1139/v07-030
  • Bonora GM, Drioli S, Ballico M, Faccini A, Corradini R, Cogoi S, et al. PNA conjugated to high-molecular weight poly(ethylene glycol): synthesis and properties. Nucleosides Nucleotides Nucleic Acids 2007; 26:661 - 4; http://dx.doi.org/10.1080/15257770701490548; PMID: 18066875
  • Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 2006; 128:10258 - 67; http://dx.doi.org/10.1021/ja0625576; PMID: 16881656
  • Rapireddy S, He G, Roy S, Armitage BA, Ly DH. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA). J Am Chem Soc 2007; 129:15596 - 600; http://dx.doi.org/10.1021/ja074886j; PMID: 18027941
  • Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, et al. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 2011; 76:5614 - 27; http://dx.doi.org/10.1021/jo200482d; PMID: 21619025
  • Rapireddy S, Bahal R, Ly DH. Strand invasion of mixed-sequence, double-helical B-DNA by γ-peptide nucleic acids containing G-clamp nucleobases under physiological conditions. Biochemistry 2011; 50:3913 - 8; http://dx.doi.org/10.1021/bi2002554; PMID: 21476606
  • He G, Rapireddy S, Bahal R, Sahu B, Ly DH. Strand invasion of extended, mixed-sequence B-DNA by gammaPNAs. J Am Chem Soc 2009; 131:12088 - 90; http://dx.doi.org/10.1021/ja900228j; PMID: 19663424
  • Crawford MJ, Rapireddy S, Bahal R, Sacui I, Ly DH. Effect of steric constraint at the γ-backbone position on the conformations and hybridization properties of PNAs. J Nucleic Acids 2011:652702, 10 pp.
  • Bahal R, Sahu B, Rapireddy S, Lee CM, Ly DH. Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-miniPEG-γPNAs. Chembiochem 2012; 13:56 - 60; http://dx.doi.org/10.1002/cbic.201100646; PMID: 22135012
  • McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 2011; 19:172 - 80; http://dx.doi.org/10.1038/mt.2010.200; PMID: 20859257
  • McNeer NA, Schleifman EB, Cuthbert A, Brehm M, Jackson A, Cheng C, et al. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 2012; 20:658 - 69; PMID: 23076379
  • Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm 2012; 9:1481 - 8; PMID: 22482958
  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382:722 - 5; http://dx.doi.org/10.1038/382722a0; PMID: 8751444
  • Schleifman EB, Bindra R, Leif J, del Campo J, Rogers FA, Uchil P, et al. Targeted disruption of the CCR5 gene in human hematopoietic stem cells stimulated by peptide nucleic acids. Chem Biol 2011; 18:1189 - 98; http://dx.doi.org/10.1016/j.chembiol.2011.07.010; PMID: 21944757
  • Christensen L, Fitzpatrick R, Gildea B, Petersen KH, Hansen HF, Koch T, et al. Solid-phase synthesis of peptide nucleic acids. J Pept Sci 1995; 1:175 - 83; http://dx.doi.org/10.1002/psc.310010304; PMID: 9222994
  • Sahu B, Chenna V, Lathrop KL, Thomas SM, Zon G, Livak KJ, et al. Synthesis of conformationally preorganized and cell-permeable guanidine-based gamma-peptide nucleic acids (gammaGPNAs). J Org Chem 2009; 74:1509 - 16; http://dx.doi.org/10.1021/jo802211n; PMID: 19161276
  • Zhou P, Dragulescu-Andrasi A, Bhattacharya B, O’Keefe H, Vatta P, Hyldig-Nielsen JJ, et al. Synthesis of cell-permeable peptide nucleic acids and characterization of their hybridization and uptake properties. Bioorg Med Chem Lett 2006; 16:4931 - 5; http://dx.doi.org/10.1016/j.bmcl.2006.06.052; PMID: 16809033
  • Dragulescu-Andrasi A, Rapireddy S, He GF, Bhattacharya B, Hyldig-Nielsen JJ, Zon G, et al. Cell-permeable peptide nucleic acid designed to bind to the 5′-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects. J Am Chem Soc 2006; 128:16104 - 12; http://dx.doi.org/10.1021/ja063383v; PMID: 17165763
  • Jagodzinski PP, Wierzbicki A, Wustner J, Kaneko Y, Kozbor D. Enhanced human immunodeficiency virus infection in macrophages by high-molecular-weight dextran sulfate is associated with conformational changes of gp120 and expression of the CCR5 receptor. Viral Immunol 1999; 12:23 - 33; http://dx.doi.org/10.1089/vim.1999.12.23; PMID: 10333239
  • Konopka K, Düzgüneş N. Expression of CD4 controls the susceptibility of THP-1 cells to infection by R5 and X4 HIV type 1 isolates. AIDS Res Hum Retroviruses 2002; 18:123 - 31; http://dx.doi.org/10.1089/08892220252779665; PMID: 11839145
  • Blum JS, Saltzman WM. High loading efficiency and tunable release of plasmid DNA encapsulated in submicron particles fabricated from PLGA conjugated with poly-L-lysine. J Control Release 2008; 129:66 - 72; http://dx.doi.org/10.1016/j.jconrel.2008.04.002; PMID: 18511145
  • Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009; 8:526 - 33; http://dx.doi.org/10.1038/nmat2444; PMID: 19404239
  • Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Author summary. Proc Natl Acad Sci USA 2012; 109:10140 - 1; http://dx.doi.org/10.1073/pnas.1201516109
  • Anderson J, Akkina R. Complete knockdown of CCR5 by lentiviral vector-expressed siRNAs and protection of transgenic macrophages against HIV-1 infection. Gene Ther 2007; 14:1287 - 97; http://dx.doi.org/10.1038/sj.gt.3302958; PMID: 17597795
  • Monia BP, Lesnik EA, Gonzalez C, Lima WF, McGee D, Guinosso CJ, et al. Evaluation of 2′-modified oligonucleotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 1993; 268:14514 - 22; PMID: 8390996
  • Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 2002; 1:347 - 55; PMID: 12489851
  • Tonkinson JL, Stein CA. Patterns of intracellular compartmentalization, trafficking and acidification of 5′-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res 1994; 22:4268 - 75; http://dx.doi.org/10.1093/nar/22.20.4268; PMID: 7937155
  • Koziolkiewicz M, Gendaszewska E, Maszewska M, Stein CA, Stec WJ. The mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5′-nucleotidase. Blood 2001; 98:995 - 1002; http://dx.doi.org/10.1182/blood.V98.4.995; PMID: 11493444
  • Guvakova MA, Yakubov LA, Vlodavsky I, Tonkinson JL, Stein CA. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995; 270:2620 - 7; http://dx.doi.org/10.1074/jbc.270.6.2620; PMID: 7852327
  • Larrouy B, Boiziau C, Sproat B, Toulmé J-J. RNase H is responsible for the non-specific inhibition of in vitro translation by 2′-O-alkyl chimeric oligonucleotides: high affinity or selectivity, a dilemma to design antisense oligomers. Nucleic Acids Res 1995; 23:3434 - 40; http://dx.doi.org/10.1093/nar/23.17.3434; PMID: 7567453
  • Hanvey JC, Peffer NJ, Bisi JE, Thomson SA, Cadilla R, Josey JA, et al. Antisense and antigene properties of peptide nucleic acids. Science 1992; 258:1481 - 5; http://dx.doi.org/10.1126/science.1279811; PMID: 1279811
  • Knudsen H, Nielsen PE. Antisense properties of duplex- and triplex-forming PNAs. Nucleic Acids Res 1996; 24:494 - 500; http://dx.doi.org/10.1093/nar/24.3.494; PMID: 8602363
  • Koppelhus U, Zachar V, Nielsen PE, Liu X, Eugen-Olsen J, Ebbesen P. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 1997; 25:2167 - 73; http://dx.doi.org/10.1093/nar/25.11.2167; PMID: 9153317
  • Gambacorti-Passerini C, Mologni L, Bertazzoli C, le Coutre P, Marchesi E, Grignani F, et al. In vitro transcription and translation inhibition by anti-promyelocytic leukemia (PML)/retinoic acid receptor α and anti-PML peptide nucleic acid. Blood 1996; 88:1411 - 7; PMID: 8695861
  • Mologni L, Nielsen PE, Gambacorti-Passerini C. In vitro transcriptional and translational block of the bcl-2 gene operated by peptide nucleic acid. Biochem Biophys Res Commun 1999; 264:537 - 43; http://dx.doi.org/10.1006/bbrc.1999.1548; PMID: 10529398
  • Doyle DF, Braasch DA, Simmons CG, Janowski BA, Corey DR. Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mismatched bases, and PNA length. Biochemistry 2001; 40:53 - 64; http://dx.doi.org/10.1021/bi0020630; PMID: 11141056
  • Chiarantini L, Cerasi A, Fraternale A, Andreoni F, Scarí S, Giovine M, et al. Inhibition of macrophage iNOS by selective targeting of antisense PNA. Biochemistry 2002; 41:8471 - 7; http://dx.doi.org/10.1021/bi020079f; PMID: 12081497
  • Boado RJ, Tsukamoto H, Pardridge WM. Drug delivery of antisense molecules to the brain for treatment of Alzheimer’s disease and cerebral AIDS. J Pharm Sci 1998; 87:1308 - 15; http://dx.doi.org/10.1021/js9800836; PMID: 9811482
  • Fraser GL, Holmgren J, Clarke PBS, Wahlestedt C. Antisense inhibition of δ-opioid receptor gene function in vivo by peptide nucleic acids. Mol Pharmacol 2000; 57:725 - 31; PMID: 10727518
  • Turner BJ, Cheah IK, Macfarlane KJ, Lopes EC, Petratos S, Langford SJ, et al. Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 2003; 87:752 - 63; http://dx.doi.org/10.1046/j.1471-4159.2003.02053.x; PMID: 14535957
  • McNeer NA, Chin JY, Schleifman EB, Fields RJ, Glazer PM, Saltzman WM. Nanoparticles deliver triplex-forming PNAs for site-specific genomic recombination in CD34+ human hematopoietic progenitors. Mol Ther 2011; 19:172 - 80; http://dx.doi.org/10.1038/mt.2010.200; PMID: 20859257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.