2,293
Views
56
CrossRef citations to date
0
Altmetric
Review

In vitro selection of BNA (LNA) aptamers

&
Pages 39-48 | Received 31 May 2013, Accepted 17 Jul 2013, Published online: 01 Apr 2013

References

  • Obika S, Nanbu D, Hari Y, Morio K, In Y, Ishida T, et al. Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedron Lett 1997; 38:8735 - 8; http://dx.doi.org/10.1016/S0040-4039(97)10322-7
  • Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, et al. Stability and structural features of the duplexes containing nucleoside analogs with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 1998; 39:5401 - 4; http://dx.doi.org/10.1016/S0040-4039(98)01084-3
  • Singh SK, Koshkin AA, Wengel J, Nielsen P. LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun (Camb) 1998; 4:455 - 6; http://dx.doi.org/10.1039/a708608c
  • Yamamoto T, Nakatani M, Narukawa K, Obika S. Antisense drug discovery and development. Future Med Chem 2011; 3:339 - 65; http://dx.doi.org/10.4155/fmc.11.2; PMID: 21446846
  • Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem 1995; 64:763 - 97; http://dx.doi.org/10.1146/annurev.bi.64.070195.003555; PMID: 7574500
  • Osborne SE, Ellington AD. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev 1997; 97:349 - 70; http://dx.doi.org/10.1021/cr960009c; PMID: 11848874
  • Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Rev Biochem 1999; 68:611 - 47; http://dx.doi.org/10.1146/annurev.biochem.68.1.611; PMID: 10872462
  • Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 2000; 33:591 - 9; http://dx.doi.org/10.1021/ar960167q; PMID: 10995196
  • McKeague M, Derosa MC. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012; 2012:748913; PMID:23150810. doi: http://dx.doi.org/10.1155/2012/748913.
  • Darfeuille F, Hansen JB, Orum H, Di Primo C, Toulmé JJ. LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res 2004; 32:3101 - 7; http://dx.doi.org/10.1093/nar/gkh636; PMID: 15181175
  • Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, et al. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 2004; 32:5757 - 65; http://dx.doi.org/10.1093/nar/gkh862; PMID: 15509871
  • Darfeuille F, Reigadas S, Hansen JB, Orum H, Di Primo C, Toulmé JJ. Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry 2006; 45:12076 - 82; http://dx.doi.org/10.1021/bi0606344; PMID: 17002307
  • Förster C, Brauer AB, Brode S, Schmidt KS, Perbandt M, Meyer A, et al. Comparative crystallization and preliminary X-ray diffraction studies of locked nucleic acid and RNA stems of a tenascin C-binding aptamer. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:665 - 8; http://dx.doi.org/10.1107/S1744309106020343; PMID: 16820689
  • Di Primo C, Rudloff I, Reigadas S, Arzumanov AA, Gait MJ, Toulmé JJ. Systematic screening of LNA/2′-O-methyl chimeric derivatives of a TAR RNA aptamer. FEBS Lett 2007; 581:771 - 4; http://dx.doi.org/10.1016/j.febslet.2007.01.047; PMID: 17276430
  • Virno A, Randazzo A, Giancola C, Bucci M, Cirino G, Mayol L. A novel thrombin binding aptamer containing a G-LNA residue. Bioorg Med Chem 2007; 15:5710 - 8; http://dx.doi.org/10.1016/j.bmc.2007.06.008; PMID: 17590340
  • Lebars I, Richard T, Di Primo C, Toulmé JJ. NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer. Nucleic Acids Res 2007; 35:6103 - 14; http://dx.doi.org/10.1093/nar/gkm655; PMID: 17768146
  • Bonifacio L, Church FC, Jarstfer MB. Effect of locked-nucleic acid on a biologically active g-quadruplex. A structure-activity relationship of the thrombin aptamer. Int J Mol Sci 2008; 9:422 - 33; http://dx.doi.org/10.3390/ijms9030422; PMID: 19325759
  • Lebars I, Richard T, Di Primo C, Toulmé JJ. LNA derivatives of a kissing aptamer targeted to the trans-activating responsive RNA element of HIV-1. Blood Cells Mol Dis 2007; 38:204 - 9; http://dx.doi.org/10.1016/j.bcmd.2006.11.008; PMID: 17300966
  • Hernandez FJ, Kalra N, Wengel J, Vester B. Aptamers as a model for functional evaluation of LNA and 2′-amino LNA. Bioorg Med Chem Lett 2009; 19:6585 - 7; http://dx.doi.org/10.1016/j.bmcl.2009.10.039; PMID: 19864131
  • Barciszewski J, Medgaard M, Koch T, Kurreck J, Erdmann VA. Locked nucleic acid aptamers. Methods Mol Biol 2009; 535:165 - 86; http://dx.doi.org/10.1007/978-1-59745-557-2_10; PMID: 19377996
  • Förster C, Oberthuer D, Gao J, Eichert A, Quast FG, Betzel C, et al. Crystallization and preliminary X-ray diffraction data of an LNA 7-mer duplex derived from a ricin aptamer. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:881 - 5; http://dx.doi.org/10.1107/S1744309109029145; PMID: 19724123
  • Kanwar JR, Roy K, Kanwar RK. Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 2011; 46:459 - 77; PMID: 21955150
  • Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, et al. A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res 2011; 39:2458 - 69; http://dx.doi.org/10.1093/nar/gkq996; PMID: 21030439
  • Pedersen EB, Nielsen JT, Nielsen C, Filichev VV. Enhanced anti-HIV-1 activity of G-quadruplexes comprising locked nucleic acids and intercalating nucleic acids. Nucleic Acids Res 2011; 39:2470 - 81; http://dx.doi.org/10.1093/nar/gkq1133; PMID: 21062811
  • Förster C, Zydek M, Rothkegel M, Wu Z, Gallin C, Geßner R, et al. Properties of an LNA-modified ricin RNA aptamer. Biochem Biophys Res Commun 2012; 419:60 - 5; http://dx.doi.org/10.1016/j.bbrc.2012.01.127; PMID: 22326915
  • Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, et al. Synthetic genetic polymers capable of heredity and evolution. Science 2012; 336:341 - 4; http://dx.doi.org/10.1126/science.1217622; PMID: 22517858
  • Karlsen KK, Wengel J. Locked nucleic acid and aptamers. Nucleic Acid Ther 2012; 22:366 - 70; http://dx.doi.org/10.1089/nat.2012.0382; PMID: 23181700
  • Hari Y, Obika S, Ohnishi R, Eguchi K, Osaki T, Ohishi H, et al. Synthesis and properties of 2′-O,4′-C-methyleneoxymethylene bridged nucleic acid. Bioorg Med Chem 2006; 14:1029 - 38; http://dx.doi.org/10.1016/j.bmc.2005.09.020; PMID: 16213732
  • Rahman SM, Seki S, Obika S, Haitani S, Miyashita K, Imanishi T. Highly stable pyrimidine-motif triplex formation at physiological pH values by a bridged nucleic acid analogue. Angew Chem Int Ed Engl 2007; 46:4306 - 9; http://dx.doi.org/10.1002/anie.200604857; PMID: 17469090
  • Rahman SM, Seki S, Obika S, Yoshikawa H, Miyashita K, Imanishi T. Design, synthesis, and properties of 2′,4′-BNA(NC): a bridged nucleic acid analogue. J Am Chem Soc 2008; 130:4886 - 96; http://dx.doi.org/10.1021/ja710342q; PMID: 18341342
  • Prakash TP, Siwkowski A, Allerson CR, Migawa MT, Lee S, Gaus HJ, et al. Antisense oligonucleotides containing conformationally constrained 2′,4′-(N-methoxy)aminomethylene and 2′,4′-aminooxymethylene and 2′-O,4′-C-aminomethylene bridged nucleoside analogues show improved potency in animal models. J Med Chem 2010; 53:1636 - 50; http://dx.doi.org/10.1021/jm9013295; PMID: 20108935
  • Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452:896 - 9; http://dx.doi.org/10.1038/nature06783; PMID: 18368051
  • Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327:198 - 201; http://dx.doi.org/10.1126/science.1178178; PMID: 19965718
  • Straarup EM, Fisker N, Hedtjärn M, Lindholm MW, Rosenbohm C, Aarup V, et al. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 2010; 38:7100 - 11; http://dx.doi.org/10.1093/nar/gkq457; PMID: 20615897
  • Morihiro K, Kodama T, Nishida M, Imanishi T, Obika S. Synthesis of light-responsive bridged nucleic acid and changes in affinity with complementary ssRNA. Chembiochem 2009; 10:1784 - 8; http://dx.doi.org/10.1002/cbic.200900241; PMID: 19575376
  • Morihiro K, Kodama T, Obika S. Benzylidene acetal type bridged nucleic acids: changes in properties upon cleavage of the bridge triggered by external stimuli. Chemistry 2011; 17:7918 - 26; http://dx.doi.org/10.1002/chem.201100541; PMID: 21644240
  • Kumar R, Singh SK, Koshkin AA, Rajwanshi VK, Meldgaard M, Wengel J. The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 1998; 8:2219 - 22; http://dx.doi.org/10.1016/S0960-894X(98)00366-7; PMID: 9873516
  • Singh SK, Kumar R, Wengel J. Synthesis of Novel Bicyclo[2.2.1] Ribonucleosides: 2′-Amino- and 2′-Thio-LNA Monomeric Nucleosides. J Org Chem 1998; 63:6078 - 9; http://dx.doi.org/10.1021/jo9806658; PMID: 11672223
  • Singh SK, Kumer R, Wengel J. Synthesis of 2'-Amino-LNA: A Novel Conformationally Restricted High-Affinity Oligonucleotide Analogue with a Handle. J Org Chem 1998; 63:10035 - 9; http://dx.doi.org/10.1021/jo9814445
  • Xu J, Liu Y, Dupouy C, Chattopadhyaya J. Synthesis of conformationally locked Carba-LNAs through intramolecular free-radical addition to C=N. Electrostatic and steric implication of the carba-LNA substituents in the modified oligos for nuclease and thermodynamic stabilities. J Org Chem 2009; 74:6534 - 54; http://dx.doi.org/10.1021/jo901009w; PMID: 19670835
  • Morihiro K, Kodama T, Kentefu, Moai Y, Veedu RN, Obika S. Selenomethylene locked nucleic acid enables reversible hybridization in response to redox changes. Angew Chem Int Ed Engl 2013; 52:5074 - 8; http://dx.doi.org/10.1002/anie.201300555; PMID: 23580244
  • Shrestha AR, Hari Y, Yahara A, Osawa T, Obika S. Synthesis and properties of a bridged nucleic acid with a perhydro-1,2-oxazin-3-one ring. J Org Chem 2011; 76:9891 - 9; http://dx.doi.org/10.1021/jo201597e; PMID: 22059648
  • Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, et al. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. Chembiochem 2012; 13:2513 - 6; http://dx.doi.org/10.1002/cbic.201200506; PMID: 23081931
  • Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA, et al. Synthesis and biophysical evaluation of 2′,4′-constrained 2’O-methoxyethyl and 2′,4′-constrained 2’O-ethyl nucleic acid analogues. J Org Chem 2010; 75:1569 - 81; http://dx.doi.org/10.1021/jo902560f; PMID: 20136157
  • Pallan PS, Allerson CR, Berdeja A, Seth PP, Swayze EE, Prakash TP, et al. Structure and nuclease resistance of 2′,4′-constrained 2′-O-methoxyethyl (cMOE) and 2′-O-ethyl (cEt) modified DNAs. Chem Commun (Camb) 2012; 48:8195 - 7; http://dx.doi.org/10.1039/c2cc32286b; PMID: 22614180
  • Ng EW, Shima DT, Calias P, Cunningham ET Jr., Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006; 5:123 - 32; http://dx.doi.org/10.1038/nrd1955; PMID: 16518379
  • Hicke BJ, Marion C, Chang YF, Gould T, Lynott CK, Parma D, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem 2001; 276:48644 - 54; http://dx.doi.org/10.1074/jbc.M104651200; PMID: 11590140
  • Nagashima J, Minezaki S, Obika S, Imanishi T, Kuwahara M, Sawai H. Polymerisation of a DNA strand using oligo-DNA template with modified bases, sugars and phosphates. Nucleic Acids Symp Ser (Oxf) 2007; 51:55 - 6; http://dx.doi.org/10.1093/nass/nrm028; PMID: 18029583
  • Veedu RN, Vester B, Wengel J. In vitro incorporation of LNA nucleotides. Nucleosides Nucleotides Nucleic Acids 2007; 26:1207 - 10; http://dx.doi.org/10.1080/15257770701527844; PMID: 18058567
  • Veedu RN, Vester B, Wengel J. Novel applications of locked nucleic acids. Nucleic Acids Symp Ser (Oxf) 2007; 51:29 - 30; http://dx.doi.org/10.1093/nass/nrm015; PMID: 18029570
  • Veedu RN, Vester B, Wengel J. Enzymatic incorporation of LNA nucleotides into DNA strands. Chembiochem 2007; 8:490 - 2; http://dx.doi.org/10.1002/cbic.200600501; PMID: 17315250
  • Kuwahara M, Obika S, Nagashima J, Ohta Y, Suto Y, Ozaki H, et al. Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2′,4′-bridged nucleosides. Nucleic Acids Res 2008; 36:4257 - 65; http://dx.doi.org/10.1093/nar/gkn404; PMID: 18583360
  • Veedu RN, Vester B, Wengel J. Polymerase chain reaction and transcription using locked nucleic acid nucleotide triphosphates. J Am Chem Soc 2008; 130:8124 - 5; http://dx.doi.org/10.1021/ja801389n; PMID: 18533656
  • Veedu RN, Vester B, Wengel J. Efficient enzymatic synthesis of LNA-modified DNA duplexes using KOD DNA polymerase. Org Biomol Chem 2009; 7:1404 - 9; http://dx.doi.org/10.1039/b819946a; PMID: 19300826
  • Veedu RN, Wengel J. Locked nucleic acid nucleoside triphosphates and polymerases: on the way towards evolution of LNA aptamers. Mol Biosyst 2009; 5:787 - 92; http://dx.doi.org/10.1039/b905513b; PMID: 19603111
  • Kuwahara M, Takano Y, Kasahara Y, Nara H, Ozaki H, Sawai H, et al. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 2010; 15:8229 - 40; http://dx.doi.org/10.3390/molecules15118229; PMID: 21076389
  • Veedu RN, Wengel J. Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 2010; 7:536 - 42; http://dx.doi.org/10.1002/cbdv.200900343; PMID: 20232325
  • Veedu RN, Burri HV, Kumar P, Sharma PK, Hrdlicka PJ, Vester B, et al. Polymerase-directed synthesis of C5-ethynyl locked nucleic acids. Bioorg Med Chem Lett 2010; 20:6565 - 8; http://dx.doi.org/10.1016/j.bmcl.2010.09.044; PMID: 20932755
  • Wheeler M, Chardon A, Goubet A, Morihiro K, Tsan SY, Edwards SL, et al. Synthesis of selenomethylene-locked nucleic acid (SeLNA)-modified oligonucleotides by polymerases. Chem Commun (Camb) 2012; 48:11020 - 2; http://dx.doi.org/10.1039/c2cc36464f; PMID: 23042489
  • Højland T, Veedu RN, Vester B, Wengel J. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides. Artif DNA PNA XNA 2012; 3:14 - 21; http://dx.doi.org/10.4161/adna.19272; PMID: 22679529
  • Crouzier L, Dubois C, Edwards SL, Lauridsen LH, Wengel J, Veedu RN. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers. PLoS One 2012; 7:e35990; http://dx.doi.org/10.1371/journal.pone.0035990; PMID: 22558297
  • Johannsen MW, Veedu RN, Madsen AS, Wengel J. Enzymatic polymerisation involving 2′-amino-LNA nucleotides. Bioorg Med Chem Lett 2012; 22:3522 - 6; http://dx.doi.org/10.1016/j.bmcl.2012.03.073; PMID: 22503454
  • Doessing H, Hansen LH, Veedu RN, Wengel J, Vester B. Amplification and re-generation of LNA-modified libraries. Molecules 2012; 17:13087 - 97; http://dx.doi.org/10.3390/molecules171113087; PMID: 23128088
  • Lauridsen LH, Rothnagel JA, Veedu RN. Enzymatic recognition of 2′-modified ribonucleoside 5′-triphosphates: towards the evolution of versatile aptamers. Chembiochem 2012; 13:19 - 25; http://dx.doi.org/10.1002/cbic.201100648; PMID: 22162282
  • Goubet A, Chardon A, Kumar P, Sharma PK, Veedu RN. Synthesis of DNA oligonucleotides containing C5-ethynylbenzenesulfonamide-modified nucleotides (EBNA) by polymerases towards the construction of base functionalized nucleic acids. Bioorg Med Chem Lett 2013; 23:761 - 3; http://dx.doi.org/10.1016/j.bmcl.2012.11.096; PMID: 23265899
  • Sawai H, Ozaki AN, Satoh F, Ohbayashi T, Masud MM, Ozaki H. Expansion of structural and functional diversities of DNA using new 5-substituted deoxyuridine derivatives by PCR with superthermophilic KOD Dash DNA polymerase. Chem Commun (Camb) 2001; 24:2604 - 5; http://dx.doi.org/10.1039/b107838k
  • Obayashi T, Masud MM, Ozaki AN, Ozaki H, Kuwahara M, Sawai H. Enzymatic synthesis of labeled DNA by PCR using new fluorescent thymidine nucleotide analogue and superthermophilic KOD dash DNA polymerase. Bioorg Med Chem Lett 2002; 12:1167 - 70; http://dx.doi.org/10.1016/S0960-894X(02)00111-7; PMID: 11934580
  • Mehedi Masud M, Ozaki-Nakamura A, Kuwahara M, Ozaki H, Sawai H. Modified DNA bearing 5(methoxycarbonylmethyl)-2′-deoxyuridine: preparation by PCR with thermophilic DNA polymerase and postsynthetic derivatization. Chembiochem 2003; 4:584 - 8; http://dx.doi.org/10.1002/cbic.200200539; PMID: 12851926
  • Kuwahara M, Takahata Y, Shoji A, Ozaki AN, Ozaki H, Sawai H. Substrate properties of C5-substituted pyrimidine 2′-deoxynucleoside 5′-triphosphates for thermostable DNA polymerases during PCR. Bioorg Med Chem Lett 2003; 13:3735 - 8; http://dx.doi.org/10.1016/j.bmcl.2003.08.001; PMID: 14552769
  • Masud MM, Kuwahara M, Ozaki H, Sawai H. Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX. Bioorg Med Chem 2004; 12:1111 - 20; http://dx.doi.org/10.1016/j.bmc.2003.12.009; PMID: 14980623
  • Ohbayashi T, Kuwahara M, Hasegawa M, Kasamatsu T, Tamura T, Sawai H. Expansion of repertoire of modified DNAs prepared by PCR using KOD Dash DNA polymerase. Org Biomol Chem 2005; 3:2463 - 8; http://dx.doi.org/10.1039/b504330a; PMID: 15976864
  • Ohmichi T, Kuwahara M, Sasaki N, Hasegawa M, Nishikata T, Sawai H, et al. Nucleic acid with guanidinium modification exhibits efficient cellular uptake. Angew Chem Int Ed Engl 2005; 44:6682 - 5; http://dx.doi.org/10.1002/anie.200500904; PMID: 16172995
  • Kuwahara M, Hanawa K, Ohsawa K, Kitagata R, Ozaki H, Sawai H. Direct PCR amplification of various modified DNAs having amino acids: convenient preparation of DNA libraries with high-potential activities for in vitro selection. Bioorg Med Chem 2006; 14:2518 - 26; http://dx.doi.org/10.1016/j.bmc.2005.11.030; PMID: 16359870
  • Kuwahara M, Nagashima J, Hasegawa M, Tamura T, Kitagata R, Hanawa K, et al. Systematic characterization of 2′-deoxynucleoside- 5′-triphosphate analogs as substrates for DNA polymerases by polymerase chain reaction and kinetic studies on enzymatic production of modified DNA. Nucleic Acids Res 2006; 34:5383 - 94; http://dx.doi.org/10.1093/nar/gkl637; PMID: 17012278
  • Shoji A, Hasegawa T, Kuwahara M, Ozaki H, Sawai H. Chemico-enzymatic synthesis of a new fluorescent-labeled DNA by PCR with a thymidine nucleotide analogue bearing an acridone derivative. Bioorg Med Chem Lett 2007; 17:776 - 9; http://dx.doi.org/10.1016/j.bmcl.2006.10.072; PMID: 17092718
  • Shoji A, Kuwahara M, Ozaki H, Sawai H. Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 2007; 129:1456 - 64; http://dx.doi.org/10.1021/ja067098n; PMID: 17263432
  • Sawai H, Nagashima J, Kuwahara M, Kitagata R, Tamura T, Matsui I. Differences in substrate specificity of C(5)-substituted or C(5)-unsubstituted pyrimidine nucleotides by DNA polymerases from thermophilic bacteria, archaea, and phages. Chem Biodivers 2007; 4:1979 - 95; http://dx.doi.org/10.1002/cbdv.200790165; PMID: 17886855
  • Ohsawa K, Kasamatsu T, Nagashima J, Hanawa K, Kuwahara M, Ozaki H, et al. Arginine-modified DNA aptamers that show enantioselective recognition of the dicarboxylic acid moiety of glutamic acid. Anal Sci 2008; 24:167 - 72; http://dx.doi.org/10.2116/analsci.24.167; PMID: 18187867
  • Kuwahara M, Takeshima H, Nagashima J, Minezaki S, Ozaki H, Sawai H. Transcription and reverse transcription of artificial nucleic acids involving backbone modification by template-directed DNA polymerase reactions. Bioorg Med Chem 2009; 17:3782 - 8; http://dx.doi.org/10.1016/j.bmc.2009.04.045; PMID: 19427792
  • Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, et al. Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 2010; 132:4141 - 51; http://dx.doi.org/10.1021/ja908035g; PMID: 20201573
  • Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 2010; 5:e15004; http://dx.doi.org/10.1371/journal.pone.0015004; PMID: 21165148
  • Kasahara Y, Kuwahara M. Artificial specific binders directly recovered from chemically modified nucleic Acid libraries. J Nucleic Acids. 2012;2012:156482; PMID:23094139. doi: http://dx.doi.org/10.1155/2012/156482.
  • Dubois C, Campbell MA, Edwards SL, Wengel J, Veedu RN. Stepping towards highly flexible aptamers: enzymatic recognition studies of unlocked nucleic acid nucleotides. Chem Commun (Camb) 2012; 48:5503 - 5; http://dx.doi.org/10.1039/c2cc31316b; PMID: 22540128
  • Ghadessy FJ, Ong JL, Holliger P. Directed evolution of polymerase function by compartmentalized self-replication. Proc Natl Acad Sci U S A 2001; 98:4552 - 7; http://dx.doi.org/10.1073/pnas.071052198; PMID: 11274352
  • Kuwahara M. CSJ Curr. Rev. 2011; 6:78 - 85
  • Nitsche A, Kurth A, Dunkhorst A, Pänke O, Sielaff H, Junge W, et al. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX. BMC Biotechnol 2007; 7:48; http://dx.doi.org/10.1186/1472-6750-7-48; PMID: 17697378
  • Berezovski M, Musheev M, Drabovich A, Krylov SN. Non-SELEX selection of aptamers. J Am Chem Soc 2006; 128:1410 - 1; http://dx.doi.org/10.1021/ja056943j; PMID: 16448086
  • Mendonsa SD, Bowser MT. In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 2004; 126:20 - 1; http://dx.doi.org/10.1021/ja037832s; PMID: 14709039
  • Mendonsa SD, Bowser MT. In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 2005; 127:9382 - 3; http://dx.doi.org/10.1021/ja052406n; PMID: 15984861
  • Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 2005; 77:6107 - 12; http://dx.doi.org/10.1021/ac050836q; PMID: 16194066
  • Drabovich AP, Berezovski M, Okhonin V, Krylov SN. Selection of smart aptamers by methods of kinetic capillary electrophoresis. Anal Chem 2006; 78:3171 - 8; http://dx.doi.org/10.1021/ac060144h; PMID: 16643010
  • Geiger M, Hogerton AL, Bowser MT. Capillary electrophoresis. Anal Chem 2012; 84:577 - 96; http://dx.doi.org/10.1021/ac203205a; PMID: 22148626
  • Kasahara Y, Irisawa Y, Fujita H, Yahara A, Ozaki H, Obika S, et al. Capillary electrophoresis-systematic evolution of ligands by exponential enrichment selection of base- and sugar-modified DNA aptamers: target binding dominated by 2′-O,4′-C-methylene-bridged/locked nucleic acid primer. Anal Chem 2013; 85:4961 - 7; http://dx.doi.org/10.1021/ac400058z; PMID: 23662585
  • Kasahara Y, Irisawa Y, Ozaki H, Obika S, Kuwahara M. 2′,4′-BNA/LNA aptamers: CE-SELEX using a DNA-based library of full-length 2′-O,4′-C-methylene-bridged/linked bicyclic ribonucleotides. Bioorg Med Chem Lett 2013; 23:1288 - 92; http://dx.doi.org/10.1016/j.bmcl.2012.12.093; PMID: 23374873
  • Kuwahara M, Sugimoto N. Molecular evolution of functional nucleic acids with chemical modifications. Molecules 2010; 15:5423 - 44; http://dx.doi.org/10.3390/molecules15085423; PMID: 20714306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.