1,861
Views
81
CrossRef citations to date
0
Altmetric
Translational Research Paper

Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on ΔF508 cystic fibrosis transmembrane conductance regulator

, , , , , , , , , , , , , , & show all
Pages 1657-1672 | Received 27 Mar 2012, Accepted 13 Jul 2012, Published online: 09 Aug 2012

References

  • Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12:814 - 22; http://dx.doi.org/10.1038/ncb0910-814; PMID: 20811353
  • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107 - 32; http://dx.doi.org/10.1146/annurev-cellbio-092910-154005; PMID: 21801009
  • Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40:280 - 93; http://dx.doi.org/10.1016/j.molcel.2010.09.023; PMID: 20965422
  • Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nat Rev Mol Cell Biol 2012; 13:7 - 12; PMID: 22166994
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469:323 - 35; http://dx.doi.org/10.1038/nature09782; PMID: 21248839
  • Sridhar S, Botbol Y, Macian F, Cuervo AM. Autophagy and disease: always two sides to a problem. J Pathol 2012; 226:255 - 73; http://dx.doi.org/10.1002/path.3025; PMID: 21990109
  • Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 2010; 12:863 - 75; http://dx.doi.org/10.1038/ncb2090; PMID: 20711182
  • Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina DL, Settembre C, et al. Cystic fibrosis: a disorder with defective autophagy. Autophagy 2011; 7:104 - 6; http://dx.doi.org/10.4161/auto.7.1.13987; PMID: 21048426
  • Abdulrahman BA, Khweek AA, Akhter A, Caution K, Kotrange S, Abdelaziz DH, et al. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 2011; 7:1359 - 70; http://dx.doi.org/10.4161/auto.7.11.17660; PMID: 21997369
  • O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373:1891 - 904; http://dx.doi.org/10.1016/S0140-6736(09)60327-5; PMID: 19403164
  • Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005; 352:1992 - 2001; http://dx.doi.org/10.1056/NEJMra043184; PMID: 15888700
  • Accurso FJ. Update in cystic fibrosis 2005. Am J Respir Crit Care Med 2006; 173:944 - 7; http://dx.doi.org/10.1164/rccm.2601006; PMID: 16632633
  • Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, et al. Dynamic regulation of CFTR bicarbonate permeability by [Cl-]i and its role in pancreatic bicarbonate secretion. Gastroenterology 2010; 139:620 - 31; http://dx.doi.org/10.1053/j.gastro.2010.04.004; PMID: 20398666
  • Quinton PM. Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 1999; 79:Suppl S3 - 22; PMID: 9922374
  • Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR. Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill, 2001:5121-88.
  • Collins FS. Cystic fibrosis: molecular biology and therapeutic implications. Science 1992; 256:774 - 9; http://dx.doi.org/10.1126/science.1375392; PMID: 1375392
  • Vij N, Mazur S, Zeitlin PL. CFTR is a negative regulator of NFkappaB mediated innate immune response. PLoS One 2009; 4:e4664; http://dx.doi.org/10.1371/journal.pone.0004664; PMID: 19247502
  • Belcher CN, Vij N. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies. Curr Mol Med 2010; 10:82 - 94; http://dx.doi.org/10.2174/156652410791065408; PMID: 20205681
  • Anderson P. Emerging therapies in cystic fibrosis. Ther Adv Respir Dis 2010; 4:177 - 85; http://dx.doi.org/10.1177/1753465810371107; PMID: 20530065
  • Ratjen F, Grasemann H. New therapies in cystic fibrosis. Curr Pharm Des 2012; 18:614 - 27; http://dx.doi.org/10.2174/138161212799315984; PMID: 22229570
  • Mozzillo E, Franzese A, Valerio G, Sepe A, De Simone I, Mazzarella G, et al. One-year glargine treatment can improve the course of lung disease in children and adolescents with cystic fibrosis and early glucose derangements. Pediatr Diabetes 2009; 10:162 - 7; http://dx.doi.org/10.1111/j.1399-5448.2008.00451.x; PMID: 19207231
  • Amaral MD. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Curr Drug Targets 2011; 12:683 - 93; http://dx.doi.org/10.2174/138945011795378586; PMID: 21039334
  • Balch WE, Roth DM, Hutt DM. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb Perspect Biol 2011; 3:pii:a004499; http://dx.doi.org/10.1101/cshperspect.a004499; PMID: 21421917
  • Maiuri L, Luciani A, Giardino I, Raia V, Villella VR, D’Apolito M, et al. Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 2008; 180:7697 - 705; PMID: 18490773
  • Luciani A, Villella VR, Vasaturo A, Giardino I, Raia V, Pettoello-Mantovani M, et al. SUMOylation of tissue transglutaminase as link between oxidative stress and inflammation. J Immunol 2009; 183:2775 - 84; http://dx.doi.org/10.4049/jimmunol.0900993; PMID: 19625650
  • Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 2005; 115:2564 - 71; http://dx.doi.org/10.1172/JCI24898; PMID: 16127463
  • Van Goor F, Straley KS, Cao D, González J, Hadida S, Hazlewood A, et al. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. AJP - Lung Physiol 2006; 260:L1117 - L1130; http://dx.doi.org/10.1152/ajplung.00169.2005
  • Kim Chiaw P, Wellhauser L, Huan LJ, Ramjeesingh M, Bear CE. A chemical corrector modifies the channel function of F508del-CFTR. Mol Pharmacol 2010; 78:411 - 8; http://dx.doi.org/10.1124/mol.110.065862; PMID: 20501743
  • Okiyoneda T, Barrière H, Bagdány M, Rabeh WM, Du K, Höhfeld J, et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 2010; 329:805 - 10; http://dx.doi.org/10.1126/science.1191542; PMID: 20595578
  • Lukacs GL, Verkman AS. CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Trends Mol Med 2012; 18:81 - 91; http://dx.doi.org/10.1016/j.molmed.2011.10.003; PMID: 22138491
  • Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al, VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 2011; 365:1663 - 72; http://dx.doi.org/10.1056/NEJMoa1105185; PMID: 22047557
  • Davis PB. Therapy for cystic fibrosis--the end of the beginning?. N Engl J Med 2011; 365:1734 - 5; http://dx.doi.org/10.1056/NEJMe1110323; PMID: 22047565
  • Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 2012; 67:12 - 8; http://dx.doi.org/10.1136/thoraxjnl-2011-200393; PMID: 21825083
  • Elborn JS. Fixing cystic fibrosis CFTR with correctors and potentiators. Off to a good start. Thorax 2012; 67:4 - 5; http://dx.doi.org/10.1136/thoraxjnl-2011-201197; PMID: 22058188
  • Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 2009; 137:1001 - 4; http://dx.doi.org/10.1016/j.cell.2009.05.023; PMID: 19524504
  • Gidalevitz T, Kikis EA, Morimoto RI. A cellular perspective on conformational disease: the role of genetic background and proteostasis networks. Curr Opin Struct Biol 2010; 20:23 - 32; http://dx.doi.org/10.1016/j.sbi.2009.11.001; PMID: 20053547
  • Okiyoneda T, Apaja PM, Lukacs GL. Protein quality control at the plasma membrane. Curr Opin Cell Biol 2011; 23:483 - 91; http://dx.doi.org/10.1016/j.ceb.2011.04.012; PMID: 21190823
  • Jurkuvenaite A, Chen L, Bartoszewski R, Goldstein R, Bebok Z, Matalon S, et al. Functional stability of rescued delta F508 cystic fibrosis transmembrane conductance regulator in airway epithelial cells. Am J Respir Cell Mol Biol 2010; 42:363 - 72; http://dx.doi.org/10.1165/rcmb.2008-0434OC; PMID: 19502384
  • van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011; 731:237 - 45; http://dx.doi.org/10.1007/978-1-61779-080-5_20; PMID: 21516412
  • Silvis MR, Bertrand CA, Ameen N, Golin-Bisello F, Butterworth MB, Frizzell RA, et al. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Mol Biol Cell 2009; 20:2337 - 50; http://dx.doi.org/10.1091/mbc.E08-01-0084; PMID: 19244346
  • Verkman AS, Galietta LJ. Chloride channels as drug targets. Nat Rev Drug Discov 2009; 8:153 - 71; http://dx.doi.org/10.1038/nrd2780; PMID: 19153558
  • Singh OV, Pollard HB, Zeitlin PL. Chemical rescue of deltaF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol Cell Proteomics 2008; 7:1099 - 110; http://dx.doi.org/10.1074/mcp.M700303-MCP200; PMID: 18285607
  • Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 1995; 83:121 - 7; http://dx.doi.org/10.1016/0092-8674(95)90240-6; PMID: 7553863
  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992; 358:761 - 4; http://dx.doi.org/10.1038/358761a0; PMID: 1380673
  • Namkung W, Kim KH, Lee MG. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator. Gastroenterology 2005; 129:1979 - 90; http://dx.doi.org/10.1053/j.gastro.2005.08.049; PMID: 16344066
  • Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, et al. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros 2011; 10:Suppl 2 S152 - 71; http://dx.doi.org/10.1016/S1569-1993(11)60020-9; PMID: 21658634
  • van Doorninck JH, French PJ, Verbeek E, Peters RH, Morreau H, Bijman J, et al. A mouse model for the cystic fibrosis delta F508 mutation. EMBO J 1995; 14:4403 - 11; PMID: 7556083
  • Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, et al. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res 2006; 7:134; http://dx.doi.org/10.1186/1465-9921-7-134; PMID: 17064416
  • Raia V, Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Auricchio S, et al. Inhibition of p38 mitogen activated protein kinase controls airway inflammation in cystic fibrosis. Thorax 2005; 60:773 - 80; http://dx.doi.org/10.1136/thx.2005.042564; PMID: 15994249
  • Amaral MD. Processing of CFTR: traversing the cellular maze--how much CFTR needs to go through to avoid cystic fibrosis?. Pediatr Pulmonol 2005; 39:479 - 91; http://dx.doi.org/10.1002/ppul.20168; PMID: 15765539
  • Mosler K, Coraux C, Fragaki K, Zahm JM, Bajolet O, Bessaci-Kabouya K, et al. Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants. J Cyst Fibros 2008; 7:44 - 53; http://dx.doi.org/10.1016/j.jcf.2007.04.005; PMID: 17553758
  • Sharma M, Pampinella F, Nemes C, Benharouga M, So J, Du K, et al. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J Cell Biol 2004; 164:923 - 33; http://dx.doi.org/10.1083/jcb.200312018; PMID: 15007060
  • Caohuy H, Jozwik C, Pollard HB. Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway. J Biol Chem 2009; 284:25241 - 53; http://dx.doi.org/10.1074/jbc.M109.035345; PMID: 19617352
  • Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, et al. Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa. Gut 2010; 59:311 - 9; http://dx.doi.org/10.1136/gut.2009.183608; PMID: 19951908
  • Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 2011; 108:18843 - 8; http://dx.doi.org/10.1073/pnas.1105787108; PMID: 21976485

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.