4,160
Views
69
CrossRef citations to date
0
Altmetric
Translational Research Paper

Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells

, , , , , , & show all
Pages 1285-1300 | Received 09 Jul 2013, Accepted 04 Apr 2014, Published online: 13 May 2014

Reference

  • Skrott Z, Cvek B. Diethyldithiocarbamate complex with copper: the mechanism of action in cancer cells. Mini Rev Med Chem 2012; 12:1184 - 92; http://dx.doi.org/10.2174/138955712802762068; PMID: 22931589
  • Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M. Mixed ligand copper(II) complexes of N,N-bis(benzimidazol-2-ylmethyl)amine (BBA) with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity. Inorg Chem 2012; 51:5512 - 32; http://dx.doi.org/10.1021/ic2017177; PMID: 22559171
  • Gandin V, Pellei M, Tisato F, Porchia M, Santini C, Marzano C. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling. J Cell Mol Med 2012; 16:142 - 51; http://dx.doi.org/10.1111/j.1582-4934.2011.01292.x; PMID: 21388518
  • Duff B, Thangella VR, Creaven BS, Walsh M, Egan DA. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells. Eur J Pharmacol 2012; 689:45 - 55; http://dx.doi.org/10.1016/j.ejphar.2012.06.004; PMID: 22705894
  • Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des 2010; 16:1813 - 25; http://dx.doi.org/10.2174/138161210791209009; PMID: 20337575
  • Chen D, Dou QP. New uses for old copper-binding drugs: converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin Ther Targets 2008; 12:739 - 48; http://dx.doi.org/10.1517/14728222.12.6.739; PMID: 18479220
  • Chen D, Milacic V, Frezza M, Dou QP. Metal complexes, their cellular targets and potential for cancer therapy. Curr Pharm Des 2009; 15:777 - 91; http://dx.doi.org/10.2174/138161209787582183; PMID: 19275642
  • Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007; 7:573 - 84; http://dx.doi.org/10.1038/nrc2167; PMID: 17625587
  • Tardito S, Marchiò L. Copper compounds in anticancer strategies. Curr Med Chem 2009; 16:1325 - 48; http://dx.doi.org/10.2174/092986709787846532; PMID: 19355889
  • Jungwirth U, Kowol CR, Keppler BK, Hartinger CG, Berger W, Heffeter P. Anticancer activity of metal complexes: involvement of redox processes. Antioxid Redox Signal 2011; 15:1085 - 127; http://dx.doi.org/10.1089/ars.2010.3663; PMID: 21275772
  • Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics 2012; 4:127 - 38; http://dx.doi.org/10.1039/c2mt00174h; PMID: 22187112
  • Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res 2006; 66:10425 - 33; http://dx.doi.org/10.1158/0008-5472.CAN-06-2126; PMID: 17079463
  • Lovejoy DB, Jansson PJ, Brunk UT, Wong J, Ponka P, Richardson DR. Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res 2011; 71:5871 - 80; http://dx.doi.org/10.1158/0008-5472.CAN-11-1218; PMID: 21750178
  • Tardito S, Bassanetti I, Bignardi C, Elviri L, Tegoni M, Mucchino C, Bussolati O, Franchi-Gazzola R, Marchiò L. Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells. J Am Chem Soc 2011; 133:6235 - 42; http://dx.doi.org/10.1021/ja109413c; PMID: 21452832
  • Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445 - 544; http://dx.doi.org/10.4161/auto.19496; PMID: 22966490
  • Sun Y, Zou M, Hu C, Qin Y, Song X, Lu N, et al. Wogonoside induces autophagy in MDA-MB-231 cells by regulating MAPK-mTOR pathway. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 2013; 51:53-60.
  • Zhou Z, Zhang D, Yang L, Ma P, Si Y, Kortz U, Niu J, Wang J. Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. Chem Commun (Camb) 2013; 49:5189 - 91; http://dx.doi.org/10.1039/c3cc41628c; PMID: 23628910
  • Trejo-Solís C, Jimenez-Farfan D, Rodriguez-Enriquez S, Fernandez-Valverde F, Cruz-Salgado A, Ruiz-Azuara L, Sotelo J. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 2012; 12:156; http://dx.doi.org/10.1186/1471-2407-12-156; PMID: 22540380
  • Sun T, Yan Y, Zhao Y, Guo F, Jiang C. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One 2012; 7:e43442; http://dx.doi.org/10.1371/journal.pone.0043442; PMID: 22916263
  • Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 2011; 50:110 - 21; http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.696; PMID: 20971185
  • Guo WJ, Ye SS, Cao N, Huang J, Gao J, Chen QY. ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex. Experimental and toxicologic pathology: official journal of the Gesellschaft fur Toxikologische Pathologie 2010; 62:577-82.
  • Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J. Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 2009; 284:13306 - 15; http://dx.doi.org/10.1074/jbc.M900323200; PMID: 19265190
  • Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 2003; 65:1575 - 82; http://dx.doi.org/10.1016/S0006-2952(03)00083-2; PMID: 12754093
  • Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983; 52:711 - 60; http://dx.doi.org/10.1146/annurev.bi.52.070183.003431; PMID: 6137189
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10:57 - 63; http://dx.doi.org/10.1038/nrg2484; PMID: 19015660
  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011; 12:87 - 98; http://dx.doi.org/10.1038/nrg2934; PMID: 21191423
  • Wacker SA, Houghtaling BR, Elemento O, Kapoor TM. Using transcriptome sequencing to identify mechanisms of drug action and resistance. Nat Chem Biol 2012; 8:235 - 7; http://dx.doi.org/10.1038/nchembio.779; PMID: 22327403
  • Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2010; 120:127 - 41; http://dx.doi.org/10.1172/JCI40027; PMID: 20038797
  • Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF. Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal 2013; 25:150 - 8; http://dx.doi.org/10.1016/j.cellsig.2012.09.004; PMID: 22982090
  • Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy 2008; 4:237 - 9; PMID: 18094623
  • Behl C. BAG3 and friends: co-chaperones in selective autophagy during aging and disease. Autophagy 2011; 7:795 - 8; http://dx.doi.org/10.4161/auto.7.7.15844; PMID: 21681022
  • Yang Y, Fiskus W, Yong B, Atadja P, Takahashi Y, Pandita TK, Wang HG, Bhalla KN. Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy. Proc Natl Acad Sci U S A 2013; 110:6841 - 6; http://dx.doi.org/10.1073/pnas.1217692110; PMID: 23569248
  • Lin J, Zheng Z, Li Y, Yu W, Zhong W, Tian S, Zhao F, Ren X, Xiao J, Wang N, et al. A novel Bcl-XL inhibitor Z36 that induces autophagic cell death in Hela cells. Autophagy 2009; 5:314 - 20; http://dx.doi.org/10.4161/auto.5.3.7888; PMID: 19242113
  • Malik SA, Shen S, Mariño G, BenYounès A, Maiuri MC, Kroemer G. BH3 mimetics reveal the network properties of autophagy-regulatory signaling cascades. Autophagy 2011; 7:914 - 6; http://dx.doi.org/10.4161/auto.7.8.15785; PMID: 21508685
  • Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 2011; 278:403 - 13; http://dx.doi.org/10.1111/j.1742-4658.2010.07965.x; PMID: 21182587
  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4:151 - 75; PMID: 18188003
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144:646 - 74; http://dx.doi.org/10.1016/j.cell.2011.02.013; PMID: 21376230
  • Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726 - 34; http://dx.doi.org/10.1038/nrc1692; PMID: 16148885
  • Tian S, Lin J, Jun Zhou J, Wang X, Li Y, Ren X, Yu W, Zhong W, Xiao J, Sheng F, et al. Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18. Autophagy 2010; 6:1032 - 41; http://dx.doi.org/10.4161/auto.6.8.13336; PMID: 20818185
  • Whitmarsh AJ. A central role for p38 MAPK in the early transcriptional response to stress. BMC Biol 2010; 8:47; http://dx.doi.org/10.1186/1741-7007-8-47; PMID: 20515460
  • Bazuine M, Carlotti F, Rabelink MJ, Vellinga J, Hoeben RC, Maassen JA. The p38 mitogen-activated protein kinase inhibitor SB203580 reduces glucose turnover by the glucose transporter-4 of 3T3-L1 adipocytes in the insulin-stimulated state. Endocrinology 2005; 146:1818 - 24; http://dx.doi.org/10.1210/en.2004-1347; PMID: 15665038
  • Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A 2001; 98:13681 - 6; http://dx.doi.org/10.1073/pnas.251194298; PMID: 11717429
  • Hancock CN, Stockwin LH, Han B, Divelbiss RD, Jun JH, Malhotra SV, Hollingshead MG, Newton DL. A copper chelate of thiosemicarbazone NSC 689534 induces oxidative/ER stress and inhibits tumor growth in vitro and in vivo. Free Radic Biol Med 2011; 50:110 - 21; http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.696; PMID: 20971185
  • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12:401 - 10; http://dx.doi.org/10.1038/nrc3262; PMID: 22534666
  • He H, Zang LH, Feng YS, Chen LX, Kang N, Tashiro S, Onodera S, Qiu F, Ikejima T. Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. J Ethnopharmacol 2013; 148:544 - 55; http://dx.doi.org/10.1016/j.jep.2013.04.051; PMID: 23684722
  • McClung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am J Physiol Cell Physiol 2010; 298:C542 - 9; http://dx.doi.org/10.1152/ajpcell.00192.2009; PMID: 19955483