871
Views
21
CrossRef citations to date
0
Altmetric
Review

Mobile effector proteins on phage genomes

, &
Pages 139-148 | Published online: 19 Dec 2012

References

  • Boyd EF, Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002; 10:521 - 9; http://dx.doi.org/10.1016/S0966-842X(02)02459-9; PMID: 12419617
  • Brüssow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004; 68:560 - 602; http://dx.doi.org/10.1128/MMBR.68.3.560-602.2004; PMID: 15353570
  • Ehrbar K, Hardt WD. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect Genet Evol 2005; 5:1 - 9; PMID: 15567133
  • Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. [In Press.] Adv Virus Res 2012; 82:91 - 118; http://dx.doi.org/10.1016/B978-0-12-394621-8.00014-5; PMID: 22420852
  • Holmes RK, Barksdale L. Genetic analysis of tox+ and tox- bacteriophages of Corynebacterium diphtheriae.. J Virol 1969; 3:586 - 98; PMID: 4978942
  • Boyd J, Oza MN, Murphy JR. Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae.. Proc Natl Acad Sci U S A 1990; 87:5968 - 72; http://dx.doi.org/10.1073/pnas.87.15.5968; PMID: 2116013
  • Tao X, Boyd J, Murphy JR. Specific binding of the diphtheria tox regulatory element DtxR to the tox operator requires divalent heavy metal ions and a 9-base-pair interrupted palindromic sequence. Proc Natl Acad Sci U S A 1992; 89:5897 - 901; http://dx.doi.org/10.1073/pnas.89.13.5897; PMID: 1631071
  • De SN. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae.. Nature 1959; 183:1533 - 4; http://dx.doi.org/10.1038/1831533a0; PMID: 13666809
  • Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 1996; 272:1910 - 4; http://dx.doi.org/10.1126/science.272.5270.1910; PMID: 8658163
  • Boyd EF, Heilpern AJ, Waldor MK. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(ϕ)s by toxigenic Vibrio cholerae. J Bacteriol 2000; 182:5530 - 8; http://dx.doi.org/10.1128/JB.182.19.5530-5538.2000; PMID: 10986258
  • Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, et al. The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae.. Mol Cell 2005; 19:559 - 66; http://dx.doi.org/10.1016/j.molcel.2005.07.002; PMID: 16109379
  • Das B, Bischerour J, Val ME, Barre FX. Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 2010; 107:4377 - 82; http://dx.doi.org/10.1073/pnas.0910212107; PMID: 20133778
  • Boyd EF. Efficiency and specificity of CTXphi chromosomal integration: dif makes all the difference. Proc Natl Acad Sci U S A 2010; 107:3951 - 2; http://dx.doi.org/10.1073/pnas.1000310107; PMID: 20197438
  • Mekalanos JJ. Duplication and amplification of toxin genes in Vibrio cholerae.. Cell 1983; 35:253 - 63; http://dx.doi.org/10.1016/0092-8674(83)90228-3; PMID: 6627396
  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 1987; 84:2833 - 7; http://dx.doi.org/10.1073/pnas.84.9.2833; PMID: 2883655
  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 1988; 168:1487 - 92; http://dx.doi.org/10.1084/jem.168.4.1487; PMID: 2902187
  • Davis BM, Lawson EH, Sandkvist M, Ali A, Sozhamannan S, Waldor MK. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. Science 2000; 288:333 - 5; http://dx.doi.org/10.1126/science.288.5464.333; PMID: 10764646
  • Holmgren J. Actions of cholera toxin and the prevention and treatment of cholera. Nature 1981; 292:413 - 7; http://dx.doi.org/10.1038/292413a0; PMID: 7019725
  • Majoul I, Sohn K, Wieland FT, Pepperkok R, Pizza M, Hillemann J, et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 1998; 143:601 - 12; http://dx.doi.org/10.1083/jcb.143.3.601; PMID: 9813083
  • Davis BM, Kimsey HH, Chang W, Waldor MK. The Vibrio cholerae O139 Calcutta bacteriophage CTXphi is infectious and encodes a novel repressor. J Bacteriol 1999; 181:6779 - 87; PMID: 10542181
  • O’Brien AD, Marques LR, Kerry CF, Newland JW, Holmes RK. Shiga-like toxin converting phage of enterohemorrhagic Escherichia coli strain 933. Microb Pathog 1989; 6:381 - 90; http://dx.doi.org/10.1016/0882-4010(89)90080-6; PMID: 2671581
  • O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW, Formal SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 1984; 226:694 - 6; http://dx.doi.org/10.1126/science.6387911; PMID: 6387911
  • Huang A, Friesen J, Brunton JL. Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli.. J Bacteriol 1987; 169:4308 - 12; PMID: 3040688
  • Waldor MK, Friedman DI. Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 2005; 8:459 - 65; http://dx.doi.org/10.1016/j.mib.2005.06.001; PMID: 15979389
  • Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun 2002; 70:3985 - 93; http://dx.doi.org/10.1128/IAI.70.8.3985-3993.2002; PMID: 12117903
  • Wälchli S, Skånland SS, Gregers TF, Lauvrak SU, Torgersen ML, Ying M, et al. The Mitogen-activated protein kinase p38 links Shiga Toxin-dependent signaling and trafficking. Mol Biol Cell 2008; 19:95 - 104; http://dx.doi.org/10.1091/mbc.E07-06-0565; PMID: 17959827
  • Saxena SK, O’Brien AD, Ackerman EJ. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem 1989; 264:596 - 601; PMID: 2642481
  • Smith DL, James CE, Sergeant MJ, Yaxian Y, Saunders JR, McCarthy AJ, et al. Short-tailed stx phages exploit the conserved YaeT protein to disseminate Shiga toxin genes among enterobacteria. J Bacteriol 2007; 189:7223 - 33; http://dx.doi.org/10.1128/JB.00824-07; PMID: 17693515
  • Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2010; 8:26 - 38; PMID: 19966814
  • O’Brien AD, Lively TA, Chang TW, Gorbach SL. Purification of Shigella dysenteriae 1 (Shiga)-like toxin from Escherichia coli O157:H7 strain associated with haemorrhagic colitis. Lancet 1983; 2:573; http://dx.doi.org/10.1016/S0140-6736(83)90601-3; PMID: 6136724
  • Recktenwald J, Schmidt H. The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage phiP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. Infect Immun 2002; 70:1896 - 908; http://dx.doi.org/10.1128/IAI.70.4.1896-1908.2002; PMID: 11895953
  • Unkmeir A, Schmidt H. Structural analysis of phage-borne stx genes and their flanking sequences in shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun 2000; 68:4856 - 64; http://dx.doi.org/10.1128/IAI.68.9.4856-4864.2000; PMID: 10948097
  • McDonald JE, Smith DL, Fogg PC, McCarthy AJ, Allison HE. High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga Toxin-encoding Escherichia coli strains. Appl Environ Microbiol 2010; 76:2360 - 5; http://dx.doi.org/10.1128/AEM.02923-09; PMID: 20139312
  • Shaikh N, Tarr PI. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol 2003; 185:3596 - 605; http://dx.doi.org/10.1128/JB.185.12.3596-3605.2003; PMID: 12775697
  • Wagner PL, Acheson DW, Waldor MK. Isogenic lysogens of diverse shiga toxin 2-encoding bacteriophages produce markedly different amounts of shiga toxin. Infect Immun 1999; 67:6710 - 4; PMID: 10569798
  • Perna NT, Plunkett G 3rd, Burland V, Mau B, Glasner JD, Rose DJ, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001; 409:529 - 33; http://dx.doi.org/10.1038/35054089; PMID: 11206551
  • Ohnishi M, Kurokawa K, Hayashi T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors?. Trends Microbiol 2001; 9:481 - 5; http://dx.doi.org/10.1016/S0966-842X(01)02173-4; PMID: 11597449
  • Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8:11 - 22; http://dx.doi.org/10.1093/dnares/8.1.11; PMID: 11258796
  • Bergthorsson U, Ochman H. Heterogeneity of genome sizes among natural isolates of Escherichia coli.. J Bacteriol 1995; 177:5784 - 9; PMID: 7592324
  • Feng PC, Monday SR, Lacher DW, Allison L, Siitonen A, Keys C, et al. Genetic diversity among clonal lineages within Escherichia coli O157:H7 stepwise evolutionary model. Emerg Infect Dis 2007; 13:1701 - 6; http://dx.doi.org/10.3201/eid1311.070381; PMID: 18217554
  • Wick LM, Qi W, Lacher DW, Whittam TS. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol 2005; 187:1783 - 91; http://dx.doi.org/10.1128/JB.187.5.1783-1791.2005; PMID: 15716450
  • Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, Hyytia-Trees EK, et al. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 2006; 16:757 - 67; http://dx.doi.org/10.1101/gr.4759706; PMID: 16606700
  • Feng P, Lampel KA, Karch H, Whittam TS. Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis 1998; 177:1750 - 3; http://dx.doi.org/10.1086/517438; PMID: 9607864
  • Whittam TS, Reid SD, Selander RK. Mutators and long-term molecular evolution of pathogenic Escherichia coli O157:H7. Emerg Infect Dis 1998; 4:615 - 7; http://dx.doi.org/10.3201/eid0404.980411; PMID: 9866737
  • Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, et al, HUS Investigation Team. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 2011; 365:1771 - 80; http://dx.doi.org/10.1056/NEJMoa1106483; PMID: 21696328
  • Denamur E. The 2011 Shiga toxin-producing Escherichia coli O104:H4 German outbreak: a lesson in genomic plasticity. Clin Microbiol Infect 2011; 17:1124 - 5; http://dx.doi.org/10.1111/j.1469-0691.2011.03620.x; PMID: 21781204
  • Muniesa M, Hammerl JA, Hertwig S, Appel B, Brüssow H. Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 2012; 78:4065 - 73; http://dx.doi.org/10.1128/AEM.00217-12; PMID: 22504816
  • Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 2011; 6:e22751; http://dx.doi.org/10.1371/journal.pone.0022751; PMID: 21799941
  • Ho CC, Yuen KY, Lau SK, Woo PC. Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 2011; 49:3714 - 6; http://dx.doi.org/10.1128/JCM.05062-11; PMID: 21880963
  • Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 2011; 365:709 - 17; http://dx.doi.org/10.1056/NEJMoa1106920; PMID: 21793740
  • Stavrinides J, Ma W, Guttman DS. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLoS Pathog 2006; 2:e104; http://dx.doi.org/10.1371/journal.ppat.0020104; PMID: 17040127
  • Dean P, Kenny B. The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 2009; 12:101 - 9; http://dx.doi.org/10.1016/j.mib.2008.11.006; PMID: 19144561
  • Marlovits TC, Stebbins CE. Type III secretion systems shape up as they ship out. Curr Opin Microbiol 2010; 13:47 - 52; http://dx.doi.org/10.1016/j.mib.2009.11.001; PMID: 20015680
  • McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A 1995; 92:1664 - 8; http://dx.doi.org/10.1073/pnas.92.5.1664; PMID: 7878036
  • Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 2006; 103:14941 - 6; http://dx.doi.org/10.1073/pnas.0604891103; PMID: 16990433
  • Wu B, Skarina T, Yee A, Jobin MC, Dileo R, Semesi A, et al. NleG Type 3 effectors from enterohaemorrhagic Escherichia coli are U-Box E3 ubiquitin ligases. PLoS Pathog 2010; 6:e1000960; http://dx.doi.org/10.1371/journal.ppat.1000960; PMID: 20585566
  • Singer AU, Rohde JR, Lam R, Skarina T, Kagan O, Dileo R, et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 2008; 15:1293 - 301; http://dx.doi.org/10.1038/nsmb.1511; PMID: 18997778
  • Zhang Y, Higashide WM, McCormick BA, Chen J, Zhou D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. Mol Microbiol 2006; 62:786 - 93; http://dx.doi.org/10.1111/j.1365-2958.2006.05407.x; PMID: 17076670
  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007; 1:77 - 83; http://dx.doi.org/10.1016/j.chom.2007.02.002; PMID: 18005683
  • Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100 - 25; http://dx.doi.org/10.1111/j.1574-6976.2011.00271.x; PMID: 21517912
  • Tsolis RM, Young GM, Solnick JV, Bäumler AJ. From bench to bedside: stealth of enteroinvasive pathogens. Nat Rev Microbiol 2008; 6:883 - 92; http://dx.doi.org/10.1038/nrmicro2012; PMID: 18955984
  • Miller MA, Sentz J, Rabaa MA, Mintz ED. Global epidemiology of infections due to Shigella, Salmonella serotype Typhi, and enterotoxigenic Escherichia coli.. Epidemiol Infect 2008; 136:433 - 5; http://dx.doi.org/10.1017/S095026880800040X; PMID: 18461719
  • Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ 3rd. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989; 27:313 - 20; PMID: 2915026
  • Le Minor L, Popoff MY, Bockemühl J. Supplement 1989 (n. 33) to the Kauffmann-White scheme. Res Microbiol 1990; 141:1173 - 7; http://dx.doi.org/10.1016/0923-2508(90)90090-D; PMID: 2092368
  • Boyd EF, Wang FS, Whittam TS, Selander RK. Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 1996; 62:804 - 8; PMID: 8975610
  • Popoff MY, Bockemühl J, Gheesling LL. Supplement 2002 (no. 46) to the Kauffmann-White scheme. Res Microbiol 2004; 155:568 - 70; http://dx.doi.org/10.1016/j.resmic.2004.04.005; PMID: 15313257
  • Groisman EA, Ochman H. How Salmonella became a pathogen. Trends Microbiol 1997; 5:343 - 9; http://dx.doi.org/10.1016/S0966-842X(97)01099-8; PMID: 9294889
  • Ochman H, Bergthorsson U. Genome evolution in enteric bacteria. Curr Opin Genet Dev 1995; 5:734 - 8; http://dx.doi.org/10.1016/0959-437X(95)80005-P; PMID: 8745071
  • Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, et al. Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol 2004; 186:5883 - 98; http://dx.doi.org/10.1128/JB.186.17.5883-5898.2004; PMID: 15317794
  • Porwollik S, Wong RM, McClelland M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci U S A 2002; 99:8956 - 61; http://dx.doi.org/10.1073/pnas.122153699; PMID: 12072558
  • Lan R, Reeves PR, Octavia S. Population structure, origins and evolution of major Salmonella enterica clones. Infect Genet Evol 2009; 9:996 - 1005; http://dx.doi.org/10.1016/j.meegid.2009.04.011; PMID: 19393770
  • Mills DM, Bajaj V, Lee CA. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol 1995; 15:749 - 59; http://dx.doi.org/10.1111/j.1365-2958.1995.tb02382.x; PMID: 7783645
  • Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification of bacterial virulence genes by negative selection. Science 1995; 269:400 - 3; http://dx.doi.org/10.1126/science.7618105; PMID: 7618105
  • Blanc-Potard AB, Solomon F, Kayser J, Groisman EA. The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 1999; 181:998 - 1004; PMID: 9922266
  • Blanc-Potard AB, Groisman EA. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 1997; 16:5376 - 85; http://dx.doi.org/10.1093/emboj/16.17.5376; PMID: 9311997
  • Blanc-Potard AB, Solomon F, Kayser J, Groisman EA. The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 1999; 181:998 - 1004; PMID: 9922266
  • Wong KK, McClelland M, Stillwell LC, Sisk EC, Thurston SJ, Saffer JD. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar typhimurium LT2. Infect Immun 1998; 66:3365 - 71; PMID: 9632606
  • Wood MW, Jones MA, Watson PR, Hedges S, Wallis TS, Galyov EE. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol Microbiol 1998; 29:883 - 91; http://dx.doi.org/10.1046/j.1365-2958.1998.00984.x; PMID: 9723926
  • Fang FC, DeGroote MA, Foster JW, Bäumler AJ, Ochsner U, Testerman T, et al. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 1999; 96:7502 - 7; http://dx.doi.org/10.1073/pnas.96.13.7502; PMID: 10377444
  • Figueroa-Bossi N, Bossi L. Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol 1999; 33:167 - 76; http://dx.doi.org/10.1046/j.1365-2958.1999.01461.x; PMID: 10411733
  • Figueroa-Bossi N, Uzzau S, Maloriol D, Bossi L. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella.. Mol Microbiol 2001; 39:260 - 71; http://dx.doi.org/10.1046/j.1365-2958.2001.02234.x; PMID: 11136448
  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 1994; 62:606 - 14; PMID: 7507897
  • Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 1997; 23:1089 - 97; http://dx.doi.org/10.1046/j.1365-2958.1997.3101672.x; PMID: 9106201
  • Hacker J, Carniel E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2001; 2:376 - 81; PMID: 11375927
  • Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2004; 2:414 - 24; http://dx.doi.org/10.1038/nrmicro884; PMID: 15100694
  • Boyd EF, Almagro-Moreno S, Parent MA. Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 2009; 17:47 - 53; http://dx.doi.org/10.1016/j.tim.2008.11.003; PMID: 19162481
  • Napolitano MG, Almagro-Moreno S, Boyd EF. Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains. Infect Genet Evol 2011; 11:423 - 36; http://dx.doi.org/10.1016/j.meegid.2010.12.003; PMID: 21147268
  • Galán JE. Molecular and cellular bases of Salmonella entry into host cells. Curr Top Microbiol Immunol 1996; 209:43 - 60; http://dx.doi.org/10.1007/978-3-642-85216-9_3; PMID: 8742245
  • Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium.. Proc Natl Acad Sci U S A 1996; 93:2593 - 7; http://dx.doi.org/10.1073/pnas.93.6.2593; PMID: 8637919
  • McGhie EJ, Brawn LC, Hume PJ, Humphreys D, Koronakis V. Salmonella takes control: effector-driven manipulation of the host. Curr Opin Microbiol 2009; 12:117 - 24; http://dx.doi.org/10.1016/j.mib.2008.12.001; PMID: 19157959
  • Ibarra JA, Steele-Mortimer O. Salmonella--the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 2009; 11:1579 - 86; http://dx.doi.org/10.1111/j.1462-5822.2009.01368.x; PMID: 19775254
  • Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and Regulation of the Type VI Secretion System. [Epub ahead of print] Annu Rev Microbiol 2012; PMID: 22746332