783
Views
24
CrossRef citations to date
0
Altmetric
Review

Receptor mimicry as novel therapeutic treatment for biothreat agents

Pages 17-30 | Received 29 Jul 2009, Accepted 11 Sep 2009, Published online: 01 Jan 2010

References

  • Atlas RM. Bioterrorism: from threat to reality. Annu Rev Microbiol 2002; 56:167 - 185
  • Greenfield RA, Brown BR, Hutchins JB, Iandolo JJ, Jackson R, Slater LN, et al. Microbiological, biological and chemical weapons of warfare and terrorism. Am J Med Sci 2002; 323:326 - 340
  • Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001; 7:933 - 944
  • Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, et al. Multidrug resistance in Yersinia pestis mediated by transferable plasmid. N Engl J Med 1997; 337:677 - 80
  • Schengrund CL. “Multivalent” saccharides: development of new approaches for inhibiting the effects of glycosphingolipid-binding pathogens. Biochem Pharmacol 2003; 65:699 - 707
  • Ofek I, Hasty DL, Doyle RJ. Ofek I, Hasty DL, Doyle RJ. Bacterial adhesion to animal cells and tissues 2003; First edition Washington DC ASM Press
  • Sharon N, Ofek I. Fighting infectious disease with inhibitors of microbial adhesion to host tissues. Crit Rev Food Sci 2002; 42:267 - 272
  • Zopf D, Roth S. Oligosaccharide anti-infective agents. Lancet 1996; 347:1017 - 1021
  • Sharon N. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 2006; 1760:527 - 537
  • Mitchell DA, Fadden AJ, Drickamer K. A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. J Biol Chem 2001; 276:2939 - 2945
  • Holmskov U, Thiel S, Jensenius JC. Collectins and ficolins: humoral lectins of the innate immune defense. Annu Rev Immunol 2003; 21:547 - 578
  • Alvarez CP, Lasala F, Carrillo J, Muñiz O, Corbí AL, Delgado R. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 2002; 76:6841 - 6844
  • Cundell DR, Tuomanen EI. Receptor specificity of adherence of Streptococcus pneumoniae to human type-II pneumocytes and vascular endothelial cells in vitro. Microb Pathog 1994; 17:361 - 374
  • van Ginkel FW, McGhee JR, Watt JM, Campos-Torres A, Parish LA, Briles DE. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. PNAS 2003; 100:14363 - 14367
  • Simon PM, Goode PL, Mobasseri A, Zopf D. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid-containing oligosaccharides. Infect Immun 1997; 65:750 - 757
  • Gustafsson A, Hultberg A, Sjöström R, Kacskovics I, Breimer ME, Borén T, et al. Carbohydrate-dependent inhibition of Helicobacter pylori colonization using porcine milk. Glycobiol 2006; 6:1 - 10
  • Bryan R, Feldman M, Jawetz SC, Rajan S, DiMango E, Tang H, et al. The effects of aerosolized dextran in a mouse model of Pseudomonas aeruginosa pulmonary infection. J Infect Dis 1999; 179:1449 - 1458
  • Ramphal R, Carnoy C, Fievre S, Michalski J-C, Houdret N, Lamblin G, et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Galβ1-3GlcNAc) or type 2 (Galβ1-4GlcNAc) disaccharide units. Infect Immun 1991; 59:700 - 704
  • Schweizer F, Jiao H, Hindsgaul O, Wong WY, Irvin RT. Interaction between the pili of Pseudomonas aeruginosa PAK and its carbohydrate receptor β-D-GalNAc(1→4)β-D-Gal analogs. Can J Microbiol 1997; 44:307 - 311
  • Plotkowski MC, Costa AO, Morandi V, Barbosa HS, Nader HB, de Bentzmann S, et al. Role of heparan sulphate proteoglycans as potential receptors for non-piliated Pseudomonas aeruginosa adherence to non-polarised airway epithelial cells. J Med Microbiol 2001; 50:183 - 190
  • Thomas RJ, Brooks T. Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory cell lines. Microb Pathog 2004; 36:83 - 92
  • Ader F, Le Berre R, Fackeure R, Raze D, Menozzi FD, Viget N, et al. In vivo effect of adhesion inhibitor heparin on Legionella pneumophila pathogenesis in a murine pneumonia model. Intensive Care Med 2008; 34:1511 - 1519
  • Hidari KI, Shimada S, Suzuki Y, Suzuki T. Binding kinetics of influenza viruses to sialic acid-containing carbohydrates. Glycoconj J 2007; 24:583 - 590
  • Huggins JW, Jahrling PB, Rill W, Linden CD. Characterization of the binding of the TC-83 strain of Venezuelan Equine Encephalitis virus to BW-J-M, a mouse macrophage-like cell line. J Gen Virol 1983; 64:149 - 157
  • Krivan HC, Ginsburg V, Roberts DD. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from Cystic Fibrosis patients bind specifically to gangliotetraosylceramide (Asialo GM1) and gangliotriaosylceramide (Asialo GM2). Arch Biochem Biophys 1988; 260:493 - 496
  • Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1-4Gal found in some glycolipids. Proc Nat Acad Sci USA 1988; 85:6157 - 6161
  • Kanai K, Suzuki Y, Kondo E, Maejima Y, Miyamoto D, Suzuki T, Kurata T. Specific binding of Burkholderia pseudomallei cells and their cell-surface acid phosphatase to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Southeast Asian J Trop Med Public Health 1997; 28:781 - 790
  • Critchley P, Clarkson GJ. Carbohydrate-protein interactions at interfaces: comparison of the binding of Ricinus communis lectin to two series of synthetic glycolipids using surface plasmon resonance studies. Org Biomol Chem 2003; 1:4148 - 4159
  • Thomas RJ, Brooks T. Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol 2004; 53:833 - 840
  • Pieters RJ. Intervention with bacterial adhesion by multivalent carbohydrates. Med Res Rev 2007; 27:796 - 816
  • Menache M, Miller F, Raabe O. Particle inhalability curves for humans and small laboratory animals. Ann Occ Hyg 1995; 39:317 - 328
  • Lamblin G, Aubert JP, Périni JM, Klein A, Porchet N, Degand P, et al. Human respiratory mucins. Eur Respir J 1992; 5:247 - 256
  • Klein A, Carnoy J, Wieruszeski M, Strecker G, Strang AM, van Halbeek H, et al. The broad diversity of neutral and sialylated oligosaccharides derived from human salivary mucins. Biochem 1992; 31:6152 - 6165
  • Imundo L, Barasch J, Prince A, Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci USA 1995; 92:3019 - 3023
  • De Bentzmann S, Plotkowski C, Puchelle E. Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 1996; 154:155 - 162
  • De Bentzmann S, Roger P, Puchelle E. Pseudomonas aeruginosa adherence to remodelling respiratory epithelium. Eur Respir J 1996; 9:2145 - 2150
  • De Bentzmann S, Roger P, Dupuit F, Bajolet-Laudinat O, Fuchey C, Plotkowski MC, et al. Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 1996; 64:1582 - 1588
  • Bavington C, Page C. Stopping bacterial adhesion: a novel approach to treating infections. Respir 2005; 72:335 - 344
  • Thomas RJ, Brooks T. Attachment of Yersinia pestis to human respiratory cell lines is inhibited by certain oligosaccharides. J Med Microbiol 2006; 55:309 - 315
  • Tuomanen E, Towbin H, Rosenfelder G, Braun D, Larson G, Hansson GC, et al. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated epithelial cells. J Exp Med 1988; 168:267 - 277
  • Brennan MJ, Hannah JH, Leininger E. Adhesion of Bordetella pertussis to sulfatides and to the GalNAcβ1-4Gal sequence found in glycosphingolipids. J Biol Chem 1991; 266:18827 - 18831
  • Guijen CA, Willems RJ, Mooi FR. The major fimbrial subunit of Bordetella pertussis binds to sulfated sugars. Infect Immun 1996; 64:2657 - 2665
  • Casteñeda-Roldán EI, Avelino-Flores F, Dall'Agnol M, Freer E, Cedillo L, Dornand J, et al. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 2004; 6:435 - 445
  • Sylvester FA, Sajjan US, Forstner JF. Burkholderia (pseudonym Pseudomonas) cepacia binding to lipid receptors. Infect Immun 1996; 64:1420 - 1425
  • Chiu CH, Wong S, Hancock RE, Speert DP. Adherence of Burkholderia cepacia to respiratory tract epithelial cells and inhibition with dextrans. Microbiol 2001; 147:2651 - 2658
  • Gori AH, Ahmed K, Martinez G, Masaki H, Watanabe K, Nagatake T. Mediation of attachment of Burkholderia pseudomallei to human pharyngeal epithelial cells by the asialoganglioside GM1-GM2 receptor complex. Am J Trop Med Hyg 1999; 61:473 - 475
  • Krivan HC, Nilsson B, Lingwood CA, Ryu H. Chlamydia trachomatis and Chlamydia pneumoniae bind specifically to phosphatidylethanolamine in HeLa cells and to GalNAcβ1-4Galβ1-4Glc sequences found in asialo-GM1 and asialo-GM2. Biochem Biophys Res Commun 1991; 175:1082 - 1089
  • van Alphen L, Geelen-van den Broek L, Blaas L, van Ham M, Dankert J. Blocking of fimbria-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect Immun 1991; 4473 - 4477
  • Barghouthi S, Guerdoud LM, Speert DP. Inhibition by dextran of Pseudomonas aeruginosa adherence to epithelial cells. Am J Respir Crit Care Med 1996; 154:1788 - 1793
  • Fakih MG, Murphy TF, Pattoli MA, Berenson CS. Specific binding of Haemophilus influenzae to minor gangliosides of human respiratory epithelial cells. Infect Immun 1997; 65:1695 - 1700
  • Essery SD, Weir DM, James VS, Blackwell CC, Saadi AT, Busuttil A, et al. Detection of microbial surface antigens that bind Lewisa antigen. FEMS Immunol Med Microbiol 2006; 9:15 - 22
  • Suzuki T, Portner A, Scroggs RA, Uchikawa M, Koyama N, Matsuo K, et al. Receptor specificities of human respiroviruses. J Virol 2001; 75:4604 - 4613
  • Suzuki Y, Nagao Y, Kato H, Suzuki T, Matsumoto M, Murayama J. The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains. Biochim Biophys Acta 1987; 903:417 - 424
  • Hosoya M, Balzarini J, Shigeta S, De Clerq E. Differential inhibitory effects of sulfated polysaccharides and polymers on the replication of various myxoviruses and retroviruses, depending on the composition of the target amino acid sequences of the viral envelope glycoproteins. Antimicrob Agents Chemother 1991; 35:2515 - 2520
  • Herrler G, Klenk HD. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virol 1987; 159:102 - 108
  • Ozcelik P, Bezerci FB, Suzuki Y, Uzawa H, Nishida Y, Kobayashi K, et al. Sulfatide and its synthetic analogues recognition by Moraxella catarrhalis. Microbiol Immunol 2006; 50:967 - 970
  • Ahmed K, Suzuki Y, Miyamoto D, Nagatake T. Asialo-GM1 and asialo-GM2 are putative adhesion molecules for Moraxella catarrhalis. Med Microbiol Immunol 2002; 191:5 - 10
  • Roberts DD, Olson LD, Barile MF, Ginsburg V, Krivan HC. Sialic acid-dependent adhesion of Mycoplasma pneumoniae to purified glycoproteins. J Biol Chem 1989; 264:9289 - 9293
  • Krivan HC, Olson LD, Barile MF, Ginsburg V, Roberts DD. Adhesion of Mycoplasma pneumoniae to sulphated glycolipids and inhibition by dextran sulphate. J Biol Chem 1989; 264:9283 - 9288
  • Hugosson S, Angström J, Olsson BM, Bergström J, Fredlund H, Olcen P, et al. Glycosphingolipid binding specificities of Neisseria meningitidis and Haemophilus influenzae: detection, isolation and characterization of a binding-active glycosphingolipid from human oropharyngeal epithelium. J Biochem 1998; 124:1138 - 1152
  • Lingwood CA, Cheng M, Krivan HC, Woods D. Glycolipid receptor binding specificity of exoenzyme S from Pseudomonas aeruginosa. Biochem Biophys Res Commun 1991; 175:1076 - 1081
  • Duran JA, Malvar A, Rodriguez-Ares MT, Garcia-Riestra C. Heparin inhibits Pseudomonas aeruginosa adherence to soft contact lens. Eye 1993; 7:152 - 154
  • Neyts J, Reyman D, Letourneur D, Jozefonvicz J, Schols D, Este J, et al. Differential antiviral activity of derivatized dextrans. Biochem Pharmacol 1995; 50:743 - 751
  • Barthelson R, Mobasseri A, Zopf D, Simon P. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect Immun 1998; 66:1439 - 1444
  • Payne D, Tatham D, Williamson ED, Titball RW. The pH 6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 1998; 66:4545 - 4548
  • Kienle Z, Emody L, Svanborg C, O'Toole PW. Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 1992; 138:1679 - 1687
  • Lähteenmäki K, Virkola R, Sarén A, Emödy L, Korhonen TK. Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 1998; 66:5755 - 5762
  • Lähteenmäki K, Kukkonen M, Korhonen TK. The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 2001; 504:69 - 72
  • Sahly H, Keisari L, Crouch E, Sharon N, Ofek I. Recognition of bacterial surface polysaccharides by lectins of the innate immune system and its contribution to defense against infection: the case of pulmonary pathogens. Infect Immun 2008; 76:1322 - 1332
  • Parente F, Cucino C, Anderloni A, Grandinetti G, Bianchi Porro G. Treatment of Helicobacter pylori infection using novel antiadhesion compound (3' sialyllactose sodium salt). A double blind, placebo-controlled clinical study. Helicobacter 2003; 8:252 - 256
  • Ukkonen P, Varis K, Jernfors M, Herva E, Jokinen J, Ruokokoski D, et al. Treatment of acute otitis media with an antiadhesive oligosaccharide: a randomised, double-blind, placebo-controlled trial. Lancet 2000; 356:1398 - 1402
  • Idänpään-Heikkilä I, imon PM, Zopf D, Vullo T, Cahill P, Sokol H, et al. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J Infect Dis 1997; 176:704 - 712
  • Reuter JD, Myc A, Hayes MH, Gan Z, Roy R, Qin D, et al. Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymers. Bioconj Chem 1999; 10:271 - 278
  • Fouet A, Mesnage S, Tosi-Coutre E, Gounon P, Mock M. Bacillus anthracis surface: capsule and S-layer. J Appl Microbiol 1999; 87:251 - 255
  • Sutherland MD, Kozel TR. Macrophage uptake, intracellular localization, and degradation of poly-γ-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun 2009; 77:532 - 538
  • Kern JW, Schneewind O. BslA, a pXO1-encoded adhesin of Bacillus anthracis. Mol Microbiol 2008; 68:504 - 515
  • Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, et al. Genome-based bioinformatic selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 2003; 71:4563 - 4579
  • Xu Y, Liang X, Chen Y, Koehler TM, Höök M. Identification and biochemical characterization of two novel collagen binding MSCRAMMs of Bacillus anthracis. J Biol Chem 2004; 279:51760 - 51768
  • Oliva CR, Swiecki MK, Griguer CE, Lisanby MW, Bullard DC, Turnbough CL, et al. The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. PNAS 2008; 105:1261 - 1266
  • Chakraborty S, Monfett M, Maier TM, Benach JL, Frank DW, Thanassi DG. Type IV pili in Francisella tularensis: roles of pilF and pilT in fiber assembly, host cell adherence and virulence. Infect Immun 2008; 76:2852 - 2861
  • Salomonsson E, Forsberg A, Roos N, Holz C, Maier B, Koomey M, et al. Functional analysis of pilin-like proteins from Francisella tularensis: complementation of type IV pilus phenotypes in Neisseria gonorrhoeae. Microbiol 2009; 155:2546 - 2559
  • Melillo A, Sledjeski DD, Lipski S, Wooton RM, Basrur V, Lafontaine ER. Identification of a Francisella tularensis LVS outer membrane protein that confers adherence to A549 human lung cells. FEMS Microbiol Lett 2006; 263:102 - 108
  • Balagopal A, MacFarlane A, Mohapatra N, Soni S, Gunn JS, Schlesinger LS. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect Immun 2006; 74:5114 - 5125
  • Schulert GS, Allen LH. Differential infection of mononuclear phagocytes by Francisella tularensis: role of the macrophage mannose receptor. J Leuk Biol 2006; 80:563 - 571
  • Ben Nasr A, Haithcoat J, Masterson JE, Gunn JS, Eaves-Pyles T, Klimpel JR. Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leuk Biol 2006; 80:774 - 786
  • Casteñeda-Roldán EI, Ouahrani-Bettache S, Saldaña Z, Avelino F, Rendón MA, Dornand J, et al. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 2006; 8:1877 - 1887
  • Rocha Gracia R, Casteñeda-Roldán EI, Giono-Cerezo S, Girón JA. Brucella sp. bind to sialic acid residues on human and animal red blood cells. FEMS Microbiol Lett 2002; 231:219 - 224
  • Ludwig GV, Kondig JP, Smith JF. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol 1996; 70:5592 - 5599
  • Wang E, Brault AC, Powers AM, Kang W, Weaver SC. Glycosaminoglycan binding properties of natural Venezuelan Equine Encephalitis virus isolates. J Virol 2003; 77:1204 - 1210
  • Liszewski MK, Bertram P, Leung MK, Hauhart R, Zhang L, Atkinson JP. Smallpox inhibitor of complement enzymes (SPICE): regulation of complement activation on cells and mechanism of its cellular attachment. J Immunol 2008; 181:4199 - 4207
  • Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, et al. Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell 2001; 106:117 - 126
  • Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of Severe Acute Respiratory Syndrome coronavirus. J Virol 2004; 78:12090 - 12095
  • Du Y, Rosqvist R, Forsberg Å. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 2002; 70:1453 - 1460
  • Liu F, Chen H, Galván EM, Lasaro MA, Schifferli DM. The effects of PsaA and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect Immun 2006; 74:5636 - 5644
  • Lobo LA. Adhesive properties of the purified plasminogen activator Pla of Yersinia pestis. FEMS Microbiol Lett 2006; 262:158 - 162
  • Galván EM, Chen H, Schifferli DM. The Psa fimbriae of Yersinia pestis interact with phosphatidylcholine on alveolar epithelial cells and pulmonary surfactant. Infect Immun 2007; 75:1272 - 1279
  • Zav'yalov VP, Abramov VM, Cherepanov PG, Spirina GV, Chernovskaya TV, Vasiliev AM, et al. pH 6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 1996; 14:53 - 57
  • Makoveichuk E, Cherepanov P, Lundberg S, Forsberg A, Olivecrona G. pH 6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 2003; 44:320 - 330
  • Kolodziejek AM, Sinclair DJ, Seo KS, Schnider DR, Deobald CF, Rohde HN, et al. Phenotypic characterization of OmpX, an Ail homologue of Yersinia pestis KIM. Microbiol 2007; 153:2941 - 2951
  • Felek S, Krukonis ES. The Yersinia pestis Ail protein mediates binding and Yop delivery to host cells required for plague virulence. Infect Immun 2009; 77:825 - 836
  • Zhang P, Skurnik M, Zhang S-S, Schwartz O, Kalyanasundaram R, Bulgheresi S, et al. Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect Immun 2008; 76:2070 - 2079
  • Felek S, Lawrenz MB, Krukonis ES. The Yersinia pestis autotransporter YapC mediates host cell binding, autoaggregation and biofilm formation. Microbiol 2008; 158:1802 - 1812
  • Lawrenz MB, Lenz JD, Miller VL. A novel Autotransporter adhesin is required for efficient colonization during bubonic plague. Infect Immun 2009; 77:317 - 326
  • Kachlany SC, Planet PJ, Bhattacharjee MK, Kollia E, DeSalle R, Fine DH, et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in Bacteria and Archaea. J Bacteriol 2000; 182:6169 - 6176
  • Rojas CM, Ham JH, Deng W-L, Doyle JJ, Colimer A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. PNAS 2002; 99:13142 - 13147
  • Kozaki S, Kamata Y, Watarai S, Nishiki T, Mochida S. Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins. Microb Pathog 1998; 25:91 - 99
  • Kitamura M, Iwamori M, Nagai Y. Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 1980; 628:328 - 335
  • Takamizawa K, Iwamori M, Kozaki S, Sakaguchi G, Tanaka R, Takayama H, et al. TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 1986; 201:229 - 332
  • Yowler BC, Kensinger RD, Schengrund CL. Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 2002; 277:32815 - 32819
  • Ochanda JO, Syuto B, Ohishi J, Naiki M, Kubo S. Binding of Clostridium botulinum neurotoxin to gangliosides. J Biochem 1986; 100:27 - 33
  • Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, et al. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 2005; 280:35164 - 35171
  • Kamata Y, Kozaki S, Sakaguchi G, Iwamori M, Nagai Y. Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem Biophys Res Commun 1986; 140:1015 - 1019
  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T. Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 2004; 279:30865 - 30870
  • Chatterjee S, Khullar M, Shi WY. Digalactosylceramide is the receptor for staphylococcal enterotoxin-B in human kidney proximal tubular cells. Glycobiology 1995; 5:327 - 333
  • Essery SD, Saadi AT, Twite SJ, Weir DM, Blackwell CC, Busuttil A. Lewis antigen expression on human monocytes and binding of pyrogenic toxins. Agents Actions 1994; 41:108 - 110
  • Itakura Y, Nakamura-Tsuruta S, Kominami J, Sharon N, Kasai K, Hirabayashi J. Systematic comparison of oligosaccharide specificity of Ricinus communis agglutinin I and Erythrina lectins: a search by frontal affinity chromatography. J Biochem 2007; 142:459
  • Blome MC, Schengrund CL. Multivalent binding of ricin to bovine serum albumin-based neoglycoconjugates. Toxicon 2008; 51:1214 - 1224
  • Mock M, Fouet A. Anthrax. Annu Rev Microbiol 2001; 55:647 - 671
  • Sylvestre P, Coutre-Tosi E, Mock M. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 2002; 45:169 - 178
  • Fox A, Stewart GC, Waller LN, Fox KF, Harley WM, Price RL. Carbohydrates and glycoproteins of Bacillus anthracis and related bacilli: targets for biodetection. J Microbiol Methods 2003; 54:143 - 152
  • Waller LN, Fox N, Fox KF, Fox A, Price RL. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J Microbiol Methods 2004; 58:23 - 30
  • Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT. Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization. J Gen Virol 2005; 86:2535 - 2542
  • Lasala F, Arce E, Otero JR, Rojo J, Delgado R. Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans. Antimicrob Ag Chemother 2003; 47:3970 - 3972
  • Krishna K, Chitkara RK. Pneumonic plague. Sem Resp Infect 2003; 18:159 - 167
  • Thomas RJ, Hacking A, Brooks TJG. Structural modification of a base disaccharide alters antiadhesion properties towards Yersinia pestis. FEMS Immunol Med Microbiol 2007; 49:410 - 414
  • Hambrook J, Titball R, Lindsay C. The interaction of Pseudomonas aeruginosa PAK with human and animal respiratory cell lines. FEMS Microbiol Lett 2004; 238:49 - 55
  • Huang X-Z, Lindler LE. The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun 2004; 72:7212 - 7219
  • Brown NF, Boddey JA, Flegg CA, Beacham IR. Adherence of Burkholderia pseudomallei cells to cultured human epithelial cell lines is regulated by growth temperature. Infect Immun 2002; 70:974 - 980
  • Ahmed K, Encisco HDR, Masaki H, Tao M, Omori A, Tharavichikul P, et al. Attachment of Burkholderia pseudomallei to pharyngeal epithelial cells: a highly pathogenic bacteria with low attachment ability. Am J Trop Med Hyg 1999; 60:90 - 93
  • Essex-Lopresti AE, Boddey JA, Thomas R, Smith MP, Hartley MG, Atkins T, et al. A type IV pilin, PilA, contributes to adherence of Burkholderia pseudomallei and virulence in vivo. Infect Immun 2005; 73:1260 - 1264
  • Boddey JA, Flegg CA, Day CJ, Beacham IR, Peak IR. Temperature-regulated microcolony formation by Burkholderia pseudomallei requires pilA and enhances association with cultured human cells. Infect Immun 2006; 74:5374 - 5381
  • Kozaki S, Sakaguchi G, Nishimura M, Iwamori M, Nagai Y. Inhibitory effect of Ganglioside GT1b on the activities of Clostridium botulinum toxins. FEMS Microbiol Lett 1984; 212:219 - 223
  • Lambert JM, Goldmacher VS, Collinson AR, Nadler LM, Blattler WA. An immunotoxin prepared with blocked ricin: a natural plant toxin adapted for therapeutic use. Cancer Res 1991; 51:6236 - 6242
  • Newton DL, Wales R, Richardson PT, Walbridge S, Saxena SK, Ackerman EJ, et al. Cell surface and intracellular functions for ricin galactose binding. J Biol Chem 1992; 267:11917 - 11922
  • Steeves RM, Denton ME, Barnard FC, Henry A, Lambert JM. Identification of three oligosaccharide binding sites in ricin. Biochem 1999; 38:11677 - 11685
  • Ganguly D, Mukhopadhyay C. Binding diversity of the two binding sites of ricin B lectin. Biopolymers 2006; 83:83 - 94
  • Ganguly D, Mukhopadhyay C. Extended binding site of ricin B lectin for oligosaccharide recognition. Biopolymers 2007; 86:311 - 320
  • Dawson RM, Alderton MR, Wells D, Hartley PG. Monovalent and polyvalent carbohydrate inhibitors of ricin binding to a model of the cell surface receptor. J Appl Toxicol 2006; 26:247 - 252
  • Chatterjee S, Jett M. Glycosphingolipids: the putative receptor for Staphylococcus aureus enterotoxin-B in human kidney proximal tubular cells. Mol Cell Biochem 1992; 113:25 - 31
  • Kudo S, Yazawa S. Binding of bacterial toxins to glycoproteins in the envelopes of rainbow trout eggs. Histochem J 1995; 27:300 - 308
  • Lindhorst TK, Kieburg C, Krallmann-Wenzel U. Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary α-mannosyl clusters: the effect of multivalency. Glycoconj J 1998; 15:605 - 613
  • Kitov PI, Sadowska JM, Mulvey G, Armstrong GD, Ling H, Pannu NS, et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000; 403:669 - 672
  • Autar R, Salam Khan A, Schad M, Hacker J, Liskamp RMJ, Pieters RJ. Adhesion inhibition of F1C-fimbriated Escherichia coli and Pseudomonas aeruginosa PAK and PAO by multivalent carbohydrate ligands. Chem Bio Chem 2003; 4:1317 - 1325
  • Lindberg AA, Brown JE, Strömberg N, Westling-Ryd M, Schultz JE, Karlsson KA. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae Type 1. J Biol Chem 1987; 262:1779 - 1785
  • Stein PE, Boodhoo A, Tyrrell GJ, Brunton JL, Read RJ. Crystal structure of the cell-binding B oligomer of verotoxin-from E. coli. Nature 1992; 355:748 - 750
  • Zaretsky FR, Pearce-Pratt R, Phillips DM. Sulfated polyanions block Chlamydia trachomatis infection of cervix-derived human epithelia. Infect Immun 1995; 63:3520 - 3526
  • Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microb Infect 2002; 2:391 - 400
  • Falkowski W, Edwards M, Schaeffer AJ. Inhibitory effect of substituted aromatic hydrocarbons on adherence of Escherichia coli to human epithelial cells. Infect Immun 1986; 52:863 - 866
  • Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl, et al. Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 2007; 59:777 - 786
  • Howell AB. Bioactive compounds in cranberries and their role in prevention of urinary tract infections. Mol Nutr Food Res 2007; 51:732 - 737
  • Weiss EI, Houri-Haddad Y, Greenbaum E, Hochman N, Ofek I, Zakay-Rones Z. Crnaberry juice constituents affect influenze virus adhesion and infectivity. Antiviral Res 2005; 66:9 - 12