1,106
Views
28
CrossRef citations to date
0
Altmetric
Review

Bacterial supersystem for alginate import/metabolism and its environmental and bioenergy applications

, &
Pages 97-109 | Received 10 Sep 2009, Accepted 14 Oct 2009, Published online: 01 Mar 2010

References

  • White DC, Sutton SD, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 1996; 7:301 - 306
  • Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, et al. The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis. J Bacteriol 1994; 176:284 - 290
  • Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99 - 119
  • Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405 - 1417
  • Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T, Hamana K, et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:85 - 89
  • Hisano T, Yonemoto Y, Yamashita T, Fukuda Y, Kimura A, Murata K. Direct uptake of alginate molecules through a pit on the bacterial cell surface: a novel mechanism for the uptake of macromolecules. J Ferment Bioeng 1995; 79:538 - 544
  • Hisano T, Kimura N, Hashimoto W, Murata K. Pit structure on bacterial cell surface. Biochem Biophys Res Commun 1996; 220:979 - 982
  • Fredrickson JK, Balkwill DL, Drake GR, Romine MF, Ringelberg DB, White DC. Aromatic-degrading Sphingomonas isolates from the deep subsurface. Appl Environ Microbiol 1995; 61:1917 - 1922
  • Laskin AI, White DC. Preface to special issue on Sphingomonas. J Ind Microbiol Biotechnol 1999; 23:231
  • Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated dioxins. Chemosphere 2008; 71:1005 - 1018
  • Stolz A. Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2009; 81:793 - 811
  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I. Occurrence, production and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 2008; 79:889 - 900
  • Hashimoto W, Murata K. α-L-Rhamnosidase of Sphingomonas sp. R1 producing an unusual exopolysaccharide of sphingan. Biosci Biotechnol Biochem 1998; 62:1068 - 1074
  • Gacesa P. Alginates. Carbohydr Polym 1988; 8:161 - 182
  • Hashimoto W, Maruyama Y, Itoh T, Mikami B, Murata K. Rehm B. Bacterial system for alginate uptake and degradation. Alginates: Biology and Applications 2009; 13:Heidelberg Springer 73 - 94 Microbiology Monographs
  • Jensen A. Present and future needs for algae and algal polysaccharides. Hydrobiologica 1993; 260/261:15 - 23
  • May TB, Chakrabarty AM. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol 1994; 2:151 - 157
  • Schweizer HP, Boring JR III. Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa. Infect Immun 1973; 3:762 - 767
  • Wong TY, Preston LA, Schiller NL. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles and applications. Annu Rev Microbiol 2000; 54:289 - 340
  • Momma K, Okamoto M, Mishima Y, Mori S, Hashimoto W, Murata K. A novel bacterial ATP-binding cassette (ABC) transporter system that allows uptake of macromolecules. J Bacteriol 2000; 182:3998 - 4004
  • Hashimoto W, Momma K, Maruyama Y, Yamasaki M, Mikami B, Murata K. Structure and function of bacterial super-biosystem responsible for import and depolymerization of macromolecules. Biosci Biotechnol Biochem 2005; 69:673 - 692
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959 - 964
  • Harada KM, Aso Y, Hashimoto W, Mikami B, Murata K. Sequence and analysis of the 46.6-kb plasmid pA1 from Sphingomonas sp. A1 that corresponds to the typical IncP-1β plasmid backbone without any accessory gene. Plasmid 2006; 56:11 - 23
  • He J, Nankai H, Hashimoto W, Murata K. Molecular identification and characterization of an alginate-binding protein on the cell surface of Sphingomonas sp. A1. Biochem Biophys Res Commun 2004; 322:712 - 717
  • Hashimoto W, He J, Wada Y, Nankai H, Mikami B, Murata K. Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry 2005; 44:13783 - 13794
  • Turley EV, Noble PW, Bourguignon LYW. Signaling properties of hyaluronan receptors. J Biol Chem 2002; 277:4589 - 4592
  • Maruyama Y, Momma M, Mikami B, Hashimoto W, Murata K. Crystal structure of a novel bacterial cell-surface flagellin binding to a polysaccharide. Biochemistry 2008; 47:1393 - 1402
  • Yonekura K, Maki-Yonekura S, Namba K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 2003; 424:643 - 650
  • Leiman PG, Chipman PR, Kostyuchenko VA, Mesyanzhinov VV, Rossmann MG. Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 2004; 118:419 - 429
  • Minamino T, Imada K, Namba K. Molecular motors of the bacterial flagella. Curr Opin Struct Biol 2008; 18:693 - 701
  • Hirano T, Minamino T, Macnab RM. The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J Mol Biol 2001; 312:359 - 369
  • Hashimoto W, Ochiai A, Momma K, Itoh T, Mikami B, Maruyama Y, et al. Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ. Biochem Biophys Res Commun 2009; 381:16 - 21
  • He J, Ochiai A, Fukuda Y, Hashimoto W, Murata K. A putative lipoprotein of Sphingomonas sp. A1 binds alginate rather than a lipid moiety. FEMS Microbiol Lett 2008; 288:221 - 226
  • Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, et al. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 2006; 188:2761 - 2773
  • Juncker AS, Willenbrock H, von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 2003; 12:1652 - 1662
  • Hanley SZ, Pappin DJ, Rahman D, White AJ, Elborough KM, Slabas AR. Re-evaluation of the primary structure of Ralstonia eutropha phasin and implications for polyhydroxyalkanoic acid granule binding. FEBS Lett 1999; 447:99 - 105
  • Coulton JW, Mason P, Cameron DR, Carmel G, Jean R, Rode HN. Protein fusions of β-galactosidase to the ferrichrome-iron receptor of Escherichia coli K-12. J Bacteriol 1986; 165:181 - 192
  • Pressler U, Staudenmaier H, Zimmermann L, Braun V. Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol 1988; 170:2716 - 2724
  • Lundrigan MD, Kadner RJ. Nucleotide sequence of the gene for the ferrienterochelin receptor FepA in Escherichia coli. Homology among outer membrane receptors that interact with TonB. J Biol Chem 1986; 261:10797 - 10801
  • Koedding J, Howard P, Kaufmann L, Polzer P, Lustig A, Welte W. Dimerization of TonB is not essential for its binding to the outer membrane siderophore receptor FhuA of Escherichia coli. J Biol Chem 2004; 279:9978 - 9986
  • Larsen RA, Thomas MG, Postle K. Proton motive force, ExbB and ligand-bound FepA drive conformational changes in TonB. Mol Microbiol 1999; 31:1809 - 1824
  • Sreeram KJ, Shrivastava HY, Nair BU. Studies on the nature of interaction of iron(III) with alginates. Biochim Biophys Acta 2004; 1670:121 - 125
  • Momma K, Mishima Y, Hashimoto W, Mikami B, Murata K. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 2005; 44:5053 - 5064
  • Momma K, Mikami B, Mishima Y, Hashimoto W, Murata K. Crystal structure of AlgQ2, a macro molecule (alginate)-binding protein of Sphingomonas sp. A1 at 2.0 Å resolution. J Mol Biol 2002; 316:1061 - 1069
  • Mishima Y, Momma K, Hashimoto W, Mikami B, Murata K. Crystal structure of AlgQ2, a macro molecule (alginate)-binding protein of Sphingomonas sp. A1, complexed with an alginate tetrasaccharide at 1.6-Å resolution. J Biol Chem 2003; 278:6552 - 6559
  • Quiocho FA, Spurlino JC, Rodseth LE. Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure 1997; 5:997 - 1015
  • Davidson AL, Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 2004; 73:241 - 268
  • Mishima Y, Momma K, Hashimoto W, Mikami B, Murata K. Crystallization and preliminary X-ray analysis of AlgS, a bacterial ATP-binding-cassette (ABC) protein specific to macromolecule import. Acta Crystallogr D Biol Crystallogr 2001; 57:884 - 885
  • Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 2007; 450:515 - 521
  • Yoon H-J, Hashimoto W, Miyake O, Okamoto M, Mikami B, Murata K. Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr Purif 2000; 19:84 - 90
  • Murata K, Inose T, Hisano T, Abe S, Yonemoto Y, Yamashita T, et al. Bacterial alginate lyase: enzymology, genetics and application. J Ferment Bioeng 1993; 76:427 - 437
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 2009; 37:233 - 238
  • Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, et al. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 2003; 100:10181 - 10186
  • Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, Rubio LM, et al. Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 2009; 191:4534 - 4545
  • Miyake O, Ochiai A, Hashimoto W, Murata K. Origin and diversity of alginate lyases of families PL-5 and -7 in Sphingomonas sp. strain A1. J Bacteriol 2004; 186:2891 - 2896
  • Yoon H-J, Mikami B, Hashimoto W, Murata K. Crystal structure of alginate lyase A1-III from Sphingomonas species A1 at 1.78 Å resolution. J Mol Biol 1999; 290:505 - 514
  • Yoon H-J, Hashimoto W, Miyake O, Murata K, Mikami B. Crystal structure of alginate lyase A1-III complexed with trisaccharide product at 2.0 Å resolution. J Mol Biol 2001; 307:9 - 16
  • Mikami B, Suzuki S, Yoon H-J, Miyake O, Hashimoto W, Murata K. X-ray structural analysis of alginate lyase A1-III mutants/substrate complexes: activation of a catalytic tyrosine residue by a flexible lid loop. Acta Crystallogr A 2002; 58:271
  • Linker A, Meyer K, Hoffman P. The production of unsaturated uronides by bacterial hyaluronidases. J Biol Chem 1956; 219:13 - 25
  • Yoon H-J, Choi Y-J, Miyake O, Hashimoto W, Murata K, Mikami B. Effect of His192 mutation on the activity of alginate lyase A1-III from Sphingomonas species A1. J Microbiol Biotechnol 2001; 11:118 - 123
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318 - 1322
  • Sakakibara H, Tamura T, Suzuki T, Hisano T, Abe S, Murata K. Preparation and properties of alginate lyase modified with poly(ethylene glycol). J Pharm Sci 2002; 91:1191 - 1199
  • Yamasaki M, Ogura K, Hashimoto W, Mikami B, Murata K. A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J Mol Biol 2005; 352:11 - 21
  • Ogura K, Yamasaki M, Mikami B, Hashimoto W, Murata K. Substrate recognition by family 7 alginate lyase from Sphingomonas sp. A1. J Mol Biol 2008; 380:373 - 385
  • Hashimoto W, Miyake O, Momma K, Kawai S, Murata K. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 2000; 182:4572 - 4577
  • Miyake O, Hashimoto W, Murata K. An exotype alginate lyase in Sphingomonas sp. A1: overexpression in Escherichia coli, purification and characterization of alginate lyase IV (A1-IV). Protein Expr Purif 2003; 29:33 - 41
  • Hashimoto W, Miyake O, Ochiai A, Murata K. Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV') as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J Biosci Bioeng 2005; 99:48 - 54
  • Ochiai A, Hashimoto W, Murata K. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res Microbiol 2006; 157:642 - 649
  • Preiss J, Ashwell G. Alginic acid metabolism in bacteria I. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-l-erythro-5-hexoseulose uronic acid. J Biol Chem 1962; 237:309 - 316
  • Ochiai A, Takase R, Hashimoto W, Murata K. Molecular identification of reductase involved in detoxifying α-keto acid derived from alginate monosaccharide. Abstract for the annual meeting of the Society for Biotechnology, Japan 2008; 182
  • Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008; 65:3895 - 3906
  • Takese R, Ochiai A, Mikami B, Hashimoto W, Murata K. X-ray crystal structure of α-keto acid reductase involved in alginate metabolism. Abstract for the 458th regular meeting of Kansai Branch of Japan Society for Bioscience, Biotechnology, and Agrochemistry 2009; 18
  • Takeda H, Ochiai A, Hashimoto W, Murata K. Molecular breeding of bacteria for bioethanol production from alginate. Abstract for the annual meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry 2009; 98
  • Chang YS. Recent developments in microbial biotransformation and biodegradation of dioxins. J Mol Microbiol Biotechnol 2008; 15:152 - 171
  • Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol 1992; 58:1005 - 1010
  • Aso Y, Miyamoto Y, Harada KM, Momma K, Kawai S, Hashimoto W, et al. Engineered membrane super-channel improves bioremediation potential of dioxin-degrading bacteria. Nat Biotechnol 2006; 24:188 - 189
  • Rubin EM. Genomics of cellulosic biofuels. Nature 2008; 454:841 - 845
  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 1991; 57:893 - 900
  • Murata K, Kawai S, Mikami B, Hashimoto W. Superchannel of bacteria: biological significance and new horizons. Biosci Biotechnol Biochem 2008; 72:265 - 277
  • Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K, et al. The ΔfliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Genet Genomics 2003; 269:21 - 30
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099 - 1103
  • Gray KA, Zhao L, Emptage M. Bioethanol. Curr Opin Chem Biol 2006; 10:141 - 146
  • Brehmer B, Bals B, Sanders J, Dale B. Improving the corn-ethanol industry: studying protein separation techniques to obtain higher value-added product options for distillers grains. Biotechnol Bioeng 2008; 101:49 - 61
  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 2008; 19:235 - 240
  • d'Ayala GG, Malinconico M, Laurienzo P. Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 2008; 13:2069 - 2106