790
Views
20
CrossRef citations to date
0
Altmetric
Short Communication

TPM3 and TPM4 gene products segregate to the postsynaptic region of central nervous system synapses

, &
Pages 284-289 | Published online: 01 Feb 2012

References

  • Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A 1982; 79:7590 - 4; http://dx.doi.org/10.1073/pnas.79.23.7590; PMID: 6760199
  • Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GC, Kasai H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 2008; 57:719 - 29; http://dx.doi.org/10.1016/j.neuron.2008.01.013; PMID: 18341992
  • Dillon C, Goda Y. The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 2005; 28:25 - 55; http://dx.doi.org/10.1146/annurev.neuro.28.061604.135757; PMID: 16029114
  • Rácz B, Weinberg RJ. Organization of the Arp2/3 complex in hippocampal spines. J Neurosci 2008; 28:5654 - 9; http://dx.doi.org/10.1523/JNEUROSCI.0756-08.2008; PMID: 18509026
  • Hotulainen P, Llano O, Smirnov S, Tanhuanpää K, Faix J, Rivera C, et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 2009; 185:323 - 39; http://dx.doi.org/10.1083/jcb.200809046; PMID: 19380880
  • Racz B, Weinberg RJ. Spatial organization of cofilin in dendritic spines. Neuroscience 2006; 138:447 - 56; http://dx.doi.org/10.1016/j.neuroscience.2005.11.025; PMID: 16388910
  • Görlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sassoè-Pognetto M, et al. N-cofilin can compensate for the loss of ADF in excitatory synapses. PLoS One 2011; 6:e26789; http://dx.doi.org/10.1371/journal.pone.0026789; PMID: 22046357
  • Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 2006; 49:175 - 82; http://dx.doi.org/10.1016/j.neuron.2005.12.017; PMID: 16423692
  • Gunning P, O’Neill G, Hardeman E. Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev 2008; 88:1 - 35; http://dx.doi.org/10.1152/physrev.00001.2007; PMID: 18195081
  • Blitz AL, Fine RE. Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci U S A 1974; 71:4472 - 6; http://dx.doi.org/10.1073/pnas.71.11.4472; PMID: 4530997
  • Had L, Faivre-Sarrailh C, Legrand C, Méry J, Brugidou J, Rabié A. Tropomyosin isoforms in rat neurons: the different developmental profiles and distributions of TM-4 and TMBr-3 are consistent with different functions. J Cell Sci 1994; 107:2961 - 73; PMID: 7876361
  • Mello CF, Sultana R, Piroddi M, Cai J, Pierce WM, Klein JB, et al. Acrolein induces selective protein carbonylation in synaptosomes. Neuroscience 2007; 147:674 - 9; http://dx.doi.org/10.1016/j.neuroscience.2007.04.003; PMID: 17570602
  • Martin C, Gunning P. Isoform sorting of tropomyosins. Adv Exp Med Biol 2008; 644:187 - 200; http://dx.doi.org/10.1007/978-0-387-85766-4_15; PMID: 19209823
  • Gunning P, Hardeman E, Jeffrey P, Weinberger R. Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. Bioessays 1998; 20:892 - 900; http://dx.doi.org/10.1002/(SICI)1521-1878(199811)20:11<892::AID-BIES4>3.0.CO;2-D; PMID: 9872055
  • Schevzov G, Vrhovski B, Bryce NS, Elmir S, Qiu MR, O’neill GM, et al. Tissue-specific tropomyosin isoform composition. J Histochem Cytochem 2005; 53:557 - 70; http://dx.doi.org/10.1369/jhc.4A6505.2005; PMID: 15872049
  • Curthoys N, Gunning P, Fath T. Tropomyosins in neuronal morphogenesis and development. Book Chapter 2011; (Eds) R.A. Nixon & A. Yuan (2011) XV, 411-446.
  • Adami R, Cintio O, Trombetta G, Choquet D, Grazi E. On the stiffness of the natural actin filament decorated with alexa fluor tropomyosin. Biophys Chem 2003; 104:469 - 76; http://dx.doi.org/10.1016/S0301-4622(03)00036-X; PMID: 12878314
  • Bernstein BW, Bamburg JR. Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil 1982; 2:1 - 8; http://dx.doi.org/10.1002/cm.970020102; PMID: 6890875
  • Ishikawa R, Yamashiro S, Matsumura F. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem 1989; 264:7490 - 7; PMID: 2540194
  • Fanning AS, Wolenski JS, Mooseker MS, Izant JG. Differential regulation of skeletal muscle myosin-II and brush border myosin-I enzymology and mechanochemistry by bacterially produced tropomyosin isoforms. Cell Motil Cytoskeleton 1994; 29:29 - 45; http://dx.doi.org/10.1002/cm.970290104; PMID: 7820856
  • Rex CS, Gavin CF, Rubio MD, Kramar EA, Chen LY, Jia Y, et al. Myosin IIb regulates actin dynamics during synaptic plasticity and memory formation. Neuron 2010; 67:603 - 17; http://dx.doi.org/10.1016/j.neuron.2010.07.016; PMID: 20797537
  • Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, et al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 2003; 14:1002 - 16; http://dx.doi.org/10.1091/mbc.E02-04-0244; PMID: 12631719
  • Fath T, Ke YD, Gunning P, Götz J, Ittner LM. Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 2009; 4:78 - 85; http://dx.doi.org/10.1038/nprot.2008.199; PMID: 19131959
  • Schevzov G, Whittaker SP, Fath T, Lin JJ, Gunning PW. Tropomyosin isoforms and reagents. Bioarchitecture 2011; 1:135 - 64; http://dx.doi.org/10.4161/bioa.1.4.17897; PMID: 22069507
  • Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 2011; 21:539 - 50; http://dx.doi.org/10.1016/j.cub.2011.03.007; PMID: 21458264
  • Schevzov G, Fath T, Vrhovski B, Vlahovich N, Rajan S, Hook J, et al. Divergent regulation of the sarcomere and the cytoskeleton. J Biol Chem 2008; 283:275 - 83; http://dx.doi.org/10.1074/jbc.M704392200; PMID: 17951248
  • Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 2001; 24:1071 - 89; http://dx.doi.org/10.1146/annurev.neuro.24.1.1071; PMID: 11520928
  • Segal M. Dendritic spines and long-term plasticity. Nat Rev Neurosci 2005; 6:277 - 84; http://dx.doi.org/10.1038/nrn1649; PMID: 15803159
  • Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Curr Opin Neurobiol.
  • Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25:103 - 26; http://dx.doi.org/10.1146/annurev.neuro.25.112701.142758; PMID: 12052905
  • Makino H, Malinow R. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 2009; 64:381 - 90; http://dx.doi.org/10.1016/j.neuron.2009.08.035; PMID: 19914186
  • Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Görlich A, et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 2010; 29:1889 - 902; http://dx.doi.org/10.1038/emboj.2010.72; PMID: 20407421
  • Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 2010; 13:1208 - 15; http://dx.doi.org/10.1038/nn.2634; PMID: 20835250
  • Chen LY, Rex CS, Casale MS, Gall CM, Lynch G. Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 2007; 27:5363 - 72; http://dx.doi.org/10.1523/JNEUROSCI.0164-07.2007; PMID: 17507558
  • Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 2004; 44:749 - 57; http://dx.doi.org/10.1016/j.neuron.2004.11.011; PMID: 15572107
  • Tatavarty V, Kim EJ, Rodionov V, Yu J. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging. PLoS One 2009; 4:e7724; http://dx.doi.org/10.1371/journal.pone.0007724; PMID: 19898630
  • Tønnesen J, Nadrigny F, Willig KI, Wedlich-Söldner R, Nägerl UV. Two-color STED microscopy of living synapses using a single laser-beam pair. Biophys J 2011; 101:2545 - 52; http://dx.doi.org/10.1016/j.bpj.2011.10.011; PMID: 22098754
  • Dani A, Huang B, Bergan J, Dulac C, Zhuang X. Superresolution imaging of chemical synapses in the brain. Neuron 2010; 68:843 - 56; http://dx.doi.org/10.1016/j.neuron.2010.11.021; PMID: 21144999
  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25:217 - 22; http://dx.doi.org/10.1038/76095; PMID: 10835641
  • Ginn SL, Fleming J, Rowe PB, Alexander IE. Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner. Hum Gene Ther 2003; 14:1127 - 37; http://dx.doi.org/10.1089/104303403322167975; PMID: 12908965