1,440
Views
31
CrossRef citations to date
0
Altmetric
Addendum

Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol

, , , , , , & show all
Pages 97-102 | Published online: 01 Mar 2012

References

  • Hamelinck CN, Van Hooijdonk G, Faaij APC. Ethanol from lignocellulosic biomass: techno economic performance in short-, middle- and long-term. Biomass Bioenergy 2005; 28:384 - 410; http://dx.doi.org/10.1016/j.biombioe.2004.09.002
  • Balat M, Balat H. Recent trends in global production and utilization of bioethanol fuel. Appl Energy 2009; 86:2273 - 82; http://dx.doi.org/10.1016/j.apenergy.2009.03.015
  • Rumbold K, van Buijsen HJJ, Gray VM, van Groenestijn JW, Overkamp KM, Slomp RS, et al. Microbial renewable feedstock utilization: a substrate-oriented approach. Bioeng Bugs 2010; 1:359 - 66; http://dx.doi.org/10.4161/bbug.1.5.12389; PMID: 21326838
  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010; 87:1303 - 15; http://dx.doi.org/10.1007/s00253-010-2707-z; PMID: 20535464
  • Oreb M, Dietz H, Farwick A, Boles E. Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineered 2012; 3; http://dx.doi.org/10.4161/bioe.21444; PMID: 22892590
  • Saha BC, Cotta MA. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered 2012; 3; http://dx.doi.org/10.4161/bbug.19874; PMID: 22705843
  • Bothast RJ, Schlicher MA. Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 2005; 67:19 - 25; http://dx.doi.org/10.1007/s00253-004-1819-8; PMID: 15599517
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004; 26:361 - 75; http://dx.doi.org/10.1016/j.biombioe.2003.08.002
  • Favaro L, Basaglia M, van Zyl WH, Casella S. Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl Energy 2012; http://dx.doi.org/10.1016/j.apenergy.2012.05.059
  • Favaro L, Basaglia M, Casella S. Processing wheat bran into ethanol using mild treatments and highly fermentative yeasts. Biomass Bioenergy 2012; http://dx.doi.org/10.1016/j.biombioe.2012.07.001
  • Fukuda H, Kondo A, Tamalampudi S. Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts. Biochem Eng J 2009; 44:2 - 12; http://dx.doi.org/10.1016/j.bej.2008.11.016
  • van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae.. Adv Biochem Eng Biotechnol 2007; 108:205 - 35; http://dx.doi.org/10.1007/10_2007_061; PMID: 17846725
  • Favaro L, Basaglia M, Saayman M, Rose SH, van Zyl WH, Casella S. Engineering amylolytic yeasts for industrial bioethanol production. Chemical Engineering Transactions 2010; 20:97 - 102; http://dx.doi.org/10.3303/CET1020017
  • Favaro L, Basaglia M, Trento A, Saayman M, Rose SH, van Zyl WH, et al. Development of raw starch hydrolysing yeasts for industrial bioethanol production. J Biotechnol 2010; 150:Supplement 1 142; http://dx.doi.org/10.1016/j.jbiotec.2010.08.371
  • van Zyl WH, Bloom M, Viktor MJ. Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol 2012; 95:1377 - 88; http://dx.doi.org/10.1007/s00253-012-4248-0; PMID: 22797599
  • Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 2006; 70:573 - 9; http://dx.doi.org/10.1007/s00253-005-0101-z; PMID: 16133340
  • Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast 1992; 8:423 - 88; http://dx.doi.org/10.1002/yea.320080602; PMID: 1502852
  • Lee FWF, Da Silva NA. Improved efficiency and stability of multiple cloned gene insertions at the δ sequences of Saccharomyces cerevisiae.. Appl Microbiol Biotechnol 1997; 48:339 - 45; http://dx.doi.org/10.1007/s002530051059; PMID: 9352677
  • Favaro L, Basaglia M, Rose SH, Trento A, Saayman M, van Zyl WH, et al. δ-Integration technique and efficient heterologous expression in yeasts tailored for bioethanol production. Yeast 2011; 28:S36; http://dx.doi.org/10.1002/yea.1863
  • Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Görgens JF, et al. Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl Microbiol Biotechnol 2012; 95:957 - 68; http://dx.doi.org/10.1007/s00253-012-4001-8; PMID: 22450569
  • Den Haan R, McBride JE, La Grange DC, Lynd LR, van Zyl WH. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 2007; 40:1291 - 9; http://dx.doi.org/10.1016/j.enzmictec.2006.09.022
  • Goto M, Semimaru T, Furukawa K, Hayashida S. Analysis of the raw starch-binding domain by mutation of a glucoamylase from Aspergillus awamori var. kawachi expressed in Saccharomyces cerevisiae.. Appl Environ Microbiol 1994; 60:3926 - 30; PMID: 7993082
  • Goto M, Shinoda N, Oka T, Sameshima Y, Ekino K, Furukawa K. Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion. Biosci Biotechnol Biochem 2004; 68:961 - 3; http://dx.doi.org/10.1271/bbb.68.961; PMID: 15118335
  • Fierobe HP, Clarke AJ, Tull D, Svensson B. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori. Biochemistry 1998; 37:3753 - 9; http://dx.doi.org/10.1021/bi972232p; PMID: 9521694
  • Belshaw NJ, Williamson G. Specificity of the binding domain of glucoamylase 1. Eur J Biochem 1993; 211:717 - 24; http://dx.doi.org/10.1111/j.1432-1033.1993.tb17601.x; PMID: 7679638
  • Chen HM, Ford C, Reilly PJ. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Biochem J 1994; 301:275 - 81; PMID: 8037681
  • Nakamura Y, Kobayashi F, Ohnaga M, Sawada T. Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol Bioeng 1997; 53:21 - 5; http://dx.doi.org/10.1002/(SICI)1097-0290(19970105)53:1<21::AID-BIT4>3.0.CO;2-0; PMID: 18629955
  • Yamada R, Bito Y, Adachi T, Tanaka T, Ogino C, Fukuda H, et al. Efficient production of ethanol from raw starch by a mated diploid Saccharomyces cerevisiae with integrated α-amylase and glucoamylase genes. Enzyme Microb Technol 2009; 44:344 - 9; http://dx.doi.org/10.1016/j.enzmictec.2009.01.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.