1,073
Views
3
CrossRef citations to date
0
Altmetric
Commentary

Screening and genetic manipulation of green organisms for establishment of biological life support systems in space

, &
Pages 65-71 | Published online: 01 Mar 2012

References

  • Roman MC. Life Support Systems Microbial Challenges. 2010. http://ntrs.nasa.gov/search.jsp?R=20100040625
  • Barzegari A, Saei AA. Designing probiotics with respect to the native microbiome. Future Microbiol 2012; 7:571 - 5; http://dx.doi.org/10.2217/fmb.12.37; PMID: 22568713
  • Saei AA, Barzegari A. The microbiome: the forgotten organ of the astronaut’s body - probiotics beyond terrestrial limits. Future Microbiol 2012; 7:1037 - 46; http://dx.doi.org/10.2217/fmb.12.82; PMID: 22953705
  • Brown CS. Programmable Plants: Development of an in planta System for the Remote Monitoring and Control of Plant Function for Life Support. Curr Opin Plant Biol 2000; 3:••• http://www.niac.usra.edu/files/studies/final_report/491Brown.pdf
  • Nisbet EG, Sleep NH. The habitat and nature of early life. Nature 2001; 409:1083 - 91; http://dx.doi.org/10.1038/35059210; PMID: 11234022
  • Ferl R, Wheeler R, Levine HG, Paul AL. Plants in space. Curr Opin Plant Biol 2002; 5:258 - 63; http://dx.doi.org/10.1016/S1369-5266(02)00254-6; PMID: 11960745
  • Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 1997; 277:1063 - 6; http://dx.doi.org/10.1126/science.277.5329.1063; PMID: 9262467
  • Golueke CG, Oswald WJ. Role of plants in closed systems. Annu Rev Plant Physiol 1964; 15:387 - 408; http://dx.doi.org/10.1146/annurev.pp.15.060164.002131
  • Wheeler RM. Plants for human life support in space: from Myers to Mars. Gravit Space Biol 2011;23.
  • Monje O, Bingham GE, Carman JG, Campbell WF, Salisbury FB, Eames BK, et al. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir. Adv Space Res 2000; 26:303 - 6; http://dx.doi.org/10.1016/S0273-1177(99)00575-X; PMID: 11543166
  • Brown CS, Tibbitts TW, Croxdale JG, Wheeler RM. Potato tuber formation in the spaceflight environment. Life Support Biosph Sci 1997; 4:71 - 6; PMID: 11540455
  • Levinskikh MA, Sychev VN, Derendyaeva TA, Signalova OB, Salisbury FB, Campbell WF, et al. Analysis of the spaceflight effects on growth and development of Super Dwarf wheat grown on the Space Station Mir. J Plant Physiol 2000; 156:522 - 9; http://dx.doi.org/10.1016/S0176-1617(00)80168-6; PMID: 11543345
  • Croxdale J, Cook M, Tibbitts TW, Brown CS, Wheeler RM. Structure of potato tubers formed during spaceflight. J Exp Bot 1997; 48:2037 - 43; PMID: 11541084
  • Salisbury FB, Campbell WF, Carman JG, Bingham GE, Bubenheim DL, Yendler B, et al. Plant growth during the Greenhouse II experiment on the Mir orbital station. Adv Space Res 2003; 31:221 - 7; http://dx.doi.org/10.1016/S0273-1177(02)00744-5; PMID: 12580179
  • Stutte GW, Monje O, Goins GD, Tripathy BC. Microgravity effects on thylakoid, single leaf, and whole canopy photosynthesis of dwarf wheat. Planta 2005; 223:46 - 56; http://dx.doi.org/10.1007/s00425-005-0066-2; PMID: 16160842
  • Ehleringer JR, Monson RK. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 1993; 24:411 - 39; http://dx.doi.org/10.1146/annurev.es.24.110193.002211
  • Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation. Nature 1996; 384:557 - 60; http://dx.doi.org/10.1038/384557a0
  • Dengler NG, Nelson T. Leaf structure and development in C4 plants. In: Sage R and Monson R, eds. C4 Plant Biology. Academic Press, 1999:133-72.
  • Osborne CP, Beerling DJ. Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Philos Trans R Soc Lond B Biol Sci 2006; 361:173 - 94; http://dx.doi.org/10.1098/rstb.2005.1737; PMID: 16553316
  • Cushman JC. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 2001; 127:1439 - 48; http://dx.doi.org/10.1104/pp.010818; PMID: 11743087
  • Raven JA, Edwards D. Roots: evolutionary origins and biogeochemical significance. J Exp Bot 2001; 52:Spec Issue 381 - 401; http://dx.doi.org/10.1093/jexbot/52.suppl_1.381; PMID: 11326045
  • Furbank RT, Chitty JA, Jenkins CLD, Taylor WC, Trevanion SJ, von Caemmerer S, et al. Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis. Funct Plant Biol 1997; 24:477 - 85
  • Parry M, Madgwick P, Carvalho J, Andralojc P.. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. Journal of Agricultural Science 2007; 145:31 - 4; http://dx.doi.org/10.1017/S0021859606006666
  • Andrews T, Lorimer G. Photorespiration–still unavoidable?. FEBS Lett 1978; 90:1 - 9; http://dx.doi.org/10.1016/0014-5793(78)80286-5
  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006; 312:1918 - 21; http://dx.doi.org/10.1126/science.1114722; PMID: 16809532
  • Uemura K, Suzuki Y, Shikanai T, Wadano A, Jensen RG, Chmara W, et al. A rapid and sensitive method for determination of relative specificity of RuBisCO from various species by anion-exchange chromatography. Plant Cell Physiol 1996; 37:325 - 31; http://dx.doi.org/10.1093/oxfordjournals.pcp.a028949
  • Parry MA, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ. Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 2003; 54:1321 - 33; http://dx.doi.org/10.1093/jxb/erg141; PMID: 12709478
  • Gillon J, Yakir D. Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis. Plant Cell Environ 2000; 23:903 - 15; http://dx.doi.org/10.1046/j.1365-3040.2000.00597.x
  • Wheeler RM, Stutte GW, Mackowiak CL, Yorio NC, Sager JC, Knott WM. Gas exchange rates of potato stands for bioregenerative life support. Adv Space Res 2008; 41:798 - 806; http://dx.doi.org/10.1016/j.asr.2007.07.027
  • Edeen M, Dominick J, Barta D, Packham N. “Control of air revitalization using plants: Results of the early human testing initiative phase I test,” SAE Technical Paper 961522. 1996; doi:10.4271/961522.
  • Gitelson II, Lisovsky GM. Creation of closed ecological life support systems: Results, critical problems and potentials. Journal of Siberian Federal University. Biology 2008; 1:19 - 39
  • Bugbee B, Spanarkel B, Johnson S, Monje O, Koerner G. CO2 crop growth enhancement and toxicity in wheat and rice. Adv Space Res 1994; 14:257 - 67; http://dx.doi.org/10.1016/0273-1177(94)90306-9; PMID: 11540191
  • Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C. Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 2005; 5:127 - 40; http://dx.doi.org/10.1089/ast.2005.5.127; PMID: 15815164
  • Kasting JF, Siefert JL. Life and the evolution of Earth’s atmosphere. Science 2002; 296:1066 - 8; http://dx.doi.org/10.1126/science.1071184; PMID: 12004117
  • Saei AA, Ghanbari P, Barzegari A. Haematococcus as a promising cell factory to produce recombinant pharmaceutical proteins. [Online ahead of print] Mol Biol Rep 2012; http://dx.doi.org/10.1007/s11033-012-1861-z; PMID: 22733498
  • Barzegari A, Hejazi MA, Hosseinzadeh N, Eslami S, Mehdizadeh Aghdam E, Hejazi MS. Dunaliella as an attractive candidate for molecular farming. Mol Biol Rep 2010; 37:3427 - 30; http://dx.doi.org/10.1007/s11033-009-9933-4; PMID: 19943116
  • Lehto KM, Lehto HJ, Kanervo EA. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res Microbiol 2006; 157:69 - 76; http://dx.doi.org/10.1016/j.resmic.2005.07.011; PMID: 16439102
  • Antonian AA, Abakumova IA, Meleshko GI, Vlasova TF. [Possibilities of using proteins from unicellular algae in biological life support systems]. [article in Russian] Kosm Biol Aviakosm Med 1985; 19:65 - 9; PMID: 2857798
  • Thomas DN, Dieckmann GS. Antarctic Sea ice--a habitat for extremophiles. Science 2002; 295:641 - 4; http://dx.doi.org/10.1126/science.1063391; PMID: 11809961
  • Boston P, Todd P, van de Camp J, Northup D, Spilde M. Mars simulation challenge experiments: Microorganisms from natural rock and cave communities. Grav Space Biol 2011; 22:39 - 43
  • Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S. Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and martian conditions. Astrobiology 2011; 11:65 - 73; http://dx.doi.org/10.1089/ast.2009.0430; PMID: 21294638

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.