2,072
Views
25
CrossRef citations to date
0
Altmetric
Review

Engineering microbial surfaces to degrade lignocellulosic biomass

, &
Pages 96-106 | Received 21 Oct 2013, Accepted 08 Dec 2013, Published online: 18 Dec 2013

References

  • Kerr RA. Energy. World oil crunch looming?. Science 2008; 322:1178 - 9; http://dx.doi.org/10.1126/science.322.5905.1178; PMID: 19023054
  • Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005; 16:577 - 83; http://dx.doi.org/10.1016/j.copbio.2005.08.009; PMID: 16154338
  • Perlack RD, Energy USDo, Agriculture USDo, Laboratory ORN. Biomass as feedstock for a bioenergy and bioproducts industry the technical feasibility of a billion-ton annual supply. Oak Ridge, Tenn.: Oak Ridge National Laboratory, 2005.
  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007; 315:804 - 7; http://dx.doi.org/10.1126/science.1137016; PMID: 17289988
  • Wilson DB. Cellulases and biofuels. Curr Opin Biotechnol 2009; 20:295 - 9; http://dx.doi.org/10.1016/j.copbio.2009.05.007; PMID: 19502046
  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK. Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 2010; 70:1 - 55; http://dx.doi.org/10.1016/S0065-2164(10)70001-0; PMID: 20359453
  • Miller PS, Blum PH. Extremophile-inspired strategies for enzymatic biomass saccharification. Environ Technol 2010; 31:1005 - 15; http://dx.doi.org/10.1080/09593330903536113; PMID: 20662388
  • Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 2009; 100:10 - 8; http://dx.doi.org/10.1016/j.biortech.2008.05.027; PMID: 18599291
  • Zhao X, Cheng K, Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 2009; 82:815 - 27; http://dx.doi.org/10.1007/s00253-009-1883-1; PMID: 19214499
  • Olson DG, McBride JE, Shaw AJ, Lynd LR. Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012; 23:396 - 405; http://dx.doi.org/10.1016/j.copbio.2011.11.026; PMID: 22176748
  • Zhang X-Z, Zhang Y-HP. One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Eng Life Sci 2010; 10:398 - 406; http://dx.doi.org/10.1002/elsc.201000011
  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, et al. How biotech can transform biofuels. Nat Biotechnol 2008; 26:169 - 72; http://dx.doi.org/10.1038/nbt0208-169; PMID: 18259168
  • la Grange DC, den Haan R, van Zyl WH. Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010; 87:1195 - 208; http://dx.doi.org/10.1007/s00253-010-2660-x; PMID: 20508932
  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 2012; 109:1083 - 7; http://dx.doi.org/10.1002/bit.24370; PMID: 22095526
  • Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels. Bioproducts and Biorefining 2012; 6:465 - 82; http://dx.doi.org/10.1002/bbb.1331
  • Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part II: Fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels. Bioproducts and Biorefining 2012; 6:561 - 79; http://dx.doi.org/10.1002/bbb.1350
  • Mba Medie F, Davies GJ, Drancourt M, Henrissat B. Genome analyses highlight the different biological roles of cellulases. Nat Rev Microbiol 2012; 10:227 - 34; http://dx.doi.org/10.1038/nrmicro2729; PMID: 22266780
  • Ghose T. Cellulase biosynthesis and hydrolysis of cellulosic substances. In: Ghose T, ed. Advances in Biochemical Engineering: Springer Berlin / Heidelberg, 1977.
  • Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol 2010; 61:263 - 89; http://dx.doi.org/10.1146/annurev-arplant-042809-112315; PMID: 20192742
  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol Bioeng 2010; 106:707 - 20; http://dx.doi.org/10.1002/bit.22741; PMID: 20564609
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol 2003; 54:519 - 46; http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938; PMID: 14503002
  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011; 28:1883 - 96; http://dx.doi.org/10.1039/c1np00042j; PMID: 21918777
  • Bayer EA, Shimon LJ, Shoham Y, Lamed R. Cellulosomes-structure and ultrastructure. J Struct Biol 1998; 124:221 - 34; http://dx.doi.org/10.1006/jsbi.1998.4065; PMID: 10049808
  • Fontes CM, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu Rev Biochem 2010; 79:655 - 81; http://dx.doi.org/10.1146/annurev-biochem-091208-085603; PMID: 20373916
  • Leibovitz E, Ohayon H, Gounon P, Béguin P. Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 1997; 179:2519 - 23; PMID: 9098047
  • Wen F, Sun J, Zhao H. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2010; 76:1251 - 60; http://dx.doi.org/10.1128/AEM.01687-09; PMID: 20023102
  • Lu Y, Zhang YH, Lynd LR. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A 2006; 103:16165 - 9; http://dx.doi.org/10.1073/pnas.0605381103; PMID: 17060624
  • Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005; 69:124 - 54; http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005; PMID: 15755956
  • Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452 - 81; http://dx.doi.org/10.1016/j.biotechadv.2006.03.003; PMID: 16690241
  • Fujita M, Kinoshita T. Structural remodeling of GPI anchors during biosynthesis and after attachment to proteins. FEBS Lett 2010; 584:1670 - 7; http://dx.doi.org/10.1016/j.febslet.2009.10.079; PMID: 19883648
  • Ohishi K, Inoue N, Kinoshita T. PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 2001; 20:4088 - 98; http://dx.doi.org/10.1093/emboj/20.15.4088; PMID: 11483512
  • Orlean P, Menon AK. Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 2007; 48:993 - 1011; http://dx.doi.org/10.1194/jlr.R700002-JLR200; PMID: 17361015
  • Lu CF, Kurjan J, Lipke PN. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol 1994; 14:4825 - 33; PMID: 8007981
  • Lu CF, Montijn RC, Brown JL, Klis F, Kurjan J, Bussey H, Lipke PN. Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 1995; 128:333 - 40; http://dx.doi.org/10.1083/jcb.128.3.333; PMID: 7844147
  • Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc 2006; 1:755 - 68; http://dx.doi.org/10.1038/nprot.2006.94; PMID: 17406305
  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from aspergillus aculeatus. Appl Environ Microbiol 1998; 64:4857 - 61; PMID: 9835574
  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A. Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 2002; 68:5136 - 41; http://dx.doi.org/10.1128/AEM.68.10.5136-5141.2002; PMID: 12324364
  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 2004; 70:1207 - 12; http://dx.doi.org/10.1128/AEM.70.2.1207-1212.2004; PMID: 14766607
  • Ito J, Fujita Y, Ueda M, Fukuda H, Kondo A. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol Prog 2004; 20:688 - 91; http://dx.doi.org/10.1021/bp034332u; PMID: 15176869
  • Matano Y, Hasunuma T, Kondo A. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresour Technol 2012; 108:128 - 33; http://dx.doi.org/10.1016/j.biortech.2011.12.144; PMID: 22265982
  • Matano Y, Hasunuma T, Kondo A. Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 2013; 135:403 - 9; http://dx.doi.org/10.1016/j.biortech.2012.07.025; PMID: 22954707
  • Yamada R, Nakatani Y, Ogino C, Kondo A. Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae. AMB Express 2013; 3:34; http://dx.doi.org/10.1186/2191-0855-3-34; PMID: 23800294
  • Lilly M, Fierobe HP, van Zyl WH, Volschenk H. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 2009; 9:1236 - 49; http://dx.doi.org/10.1111/j.1567-1364.2009.00564.x; PMID: 19744245
  • Tsai SL, Oh J, Singh S, Chen R, Chen W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2009; 75:6087 - 93; http://dx.doi.org/10.1128/AEM.01538-09; PMID: 19684173
  • Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 2011; 10:89; http://dx.doi.org/10.1186/1475-2859-10-89; PMID: 22044771
  • Tsai SL, Goyal G, Chen W. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2010; 76:7514 - 20; http://dx.doi.org/10.1128/AEM.01777-10; PMID: 20889773
  • Kim S, Baek SH, Lee K, Hahn JS. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 2013; 12:14; http://dx.doi.org/10.1186/1475-2859-12-14; PMID: 23383678
  • Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 2012; 109:13260 - 5; http://dx.doi.org/10.1073/pnas.1209856109; PMID: 22853950
  • Tsai SL, DaSilva NA, Chen W. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2013; 2:14 - 21; http://dx.doi.org/10.1021/sb300047u; PMID: 23656322
  • van Bloois E, Winter RT, Kolmar H, Fraaije MW. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol 2011; 29:79 - 86; http://dx.doi.org/10.1016/j.tibtech.2010.11.003; PMID: 21146237
  • Francisco JA, Stathopoulos C, Warren RA, Kilburn DG, Georgiou G. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology (N Y) 1993; 11:491 - 5; http://dx.doi.org/10.1038/nbt0493-491; PMID: 7763519
  • Earhart CF. Use of an Lpp-OmpA fusion vehicle for bacterial surface display. Methods Enzymol 2000; 326:506 - 16; http://dx.doi.org/10.1016/S0076-6879(00)26072-2; PMID: 11036660
  • Chen G, Cloud J, Georgiou G, Iverson BL. A quantitative immunoassay utilizing Escherichia coli cells possessing surface-expressed single chain Fv molecules. Biotechnol Prog 1996; 12:572 - 4; http://dx.doi.org/10.1021/bp960041s; PMID: 8987483
  • Jung HC, Lebeault JM, Pan JG. Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat Biotechnol 1998; 16:576 - 80; http://dx.doi.org/10.1038/nbt0698-576; PMID: 9624691
  • Liu W, Zhang XZ, Zhang Z, Zhang YH. Engineering of Clostridium phytofermentans Endoglucanase Cel5A for improved thermostability. Appl Environ Microbiol 2010; 76:4914 - 7; http://dx.doi.org/10.1128/AEM.00958-10; PMID: 20511418
  • Kim YS, Jung HC, Pan JG. Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 2000; 66:788 - 93; http://dx.doi.org/10.1128/AEM.66.2.788-793.2000; PMID: 10653752
  • Jung HC, Park JH, Park SH, Lebeault JM, Pan JG. Expression of carboxymethylcellulase on the surface of Escherichia coli using Pseudomonas syringae ice nucleation protein. Enzyme Microb Technol 1998; 22:348 - 54; http://dx.doi.org/10.1016/S0141-0229(97)00224-X; PMID: 9549104
  • Soma Y, Inokuma K, Tanaka T, Ogino C, Kondo A, Okamoto M, Hanai T. Direct isopropanol production from cellobiose by engineered Escherichia coli using a synthetic pathway and a cell surface display system. J Biosci Bioeng 2012; 114:80 - 5; http://dx.doi.org/10.1016/j.jbiosc.2012.02.019; PMID: 22561882
  • Muñoz-Gutiérrez I, Oropeza R, Gosset G, Martinez A. Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J Ind Microbiol Biotechnol 2012; 39:1141 - 52; http://dx.doi.org/10.1007/s10295-012-1122-0; PMID: 22638789
  • Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:19949 - 54; http://dx.doi.org/10.1073/pnas.1106958108; PMID: 22123987
  • Kojima M, Akahoshi T, Okamoto K, Yanase H. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae. Appl Microbiol Biotechnol 2012; 96:1093 - 104; http://dx.doi.org/10.1007/s00253-012-4424-2; PMID: 23053081
  • Anderson TD, Miller JI, Fierobe HP, Clubb RT. Recombinant Bacillus subtilis that grows on untreated plant biomass. Appl Environ Microbiol 2013; 79:867 - 76; http://dx.doi.org/10.1128/AEM.02433-12; PMID: 23183968
  • Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT. Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl Environ Microbiol 2011; 77:4849 - 58; http://dx.doi.org/10.1128/AEM.02599-10; PMID: 21622797
  • Frankel MB, Schneewind O. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem 2012; 287:10460 - 71; http://dx.doi.org/10.1074/jbc.M111.336404; PMID: 22303016
  • You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 2012; 78:1437 - 44; http://dx.doi.org/10.1128/AEM.07138-11; PMID: 22210210
  • Spirig T, Weiner EM, Clubb RT. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 2011; 82:1044 - 59; http://dx.doi.org/10.1111/j.1365-2958.2011.07887.x; PMID: 22026821
  • Nguyen HD, Schumann W. Establishment of an experimental system allowing immobilization of proteins on the surface of Bacillus subtilis cells. J Biotechnol 2006; 122:473 - 82; http://dx.doi.org/10.1016/j.jbiotec.2005.09.012; PMID: 16310271
  • Chen CL, Wu SC, Tjia WM, Wang CL, Lohka MJ, Wong SL. Development of a LytE-based high-density surface display system in Bacillus subtilis. Microb Biotechnol 2008; 1:177 - 90; http://dx.doi.org/10.1111/j.1751-7915.2007.00017.x; PMID: 21261835
  • Wieczorek AS, Martin VJ. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact 2010; 9:69; http://dx.doi.org/10.1186/1475-2859-9-69; PMID: 20840763
  • Lynd LR, Grethlein HE, Wolkin RH. Fermentation of Cellulosic Substrates in Batch and Continuous Culture by Clostridium thermocellum. Appl Environ Microbiol 1989; 55:3131 - 9; PMID: 16348075
  • Kojima M, Akahoshi T, Okamoto K, Yanase H. Expression and surface display of Cellulomonas endoglucanase in the ethanologenic bacterium Zymobacter palmae. Appl Microbiol Biotechnol 2012; 96:1093 - 104; http://dx.doi.org/10.1007/s00253-012-4424-2; PMID: 23053081
  • Dellomonaco C, Fava F, Gonzalez R. The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 2010; 9:3; http://dx.doi.org/10.1186/1475-2859-9-3; PMID: 20089184
  • Jang YS, Park JM, Choi S, Choi YJ, Seung Y, Cho JH, Lee SY. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 2012; 30:989 - 1000; http://dx.doi.org/10.1016/j.biotechadv.2011.08.015; PMID: 21889585
  • Li H, Cann AF, Liao JC. Biofuels: biomolecular engineering fundamentals and advances. Annu Rev Chem Biomol Eng 2010; 1:19 - 36; http://dx.doi.org/10.1146/annurev-chembioeng-073009-100938; PMID: 22432571
  • Rabinovitch-Deere CA, Oliver JW, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev 2013; 113:4611 - 32; http://dx.doi.org/10.1021/cr300361t; PMID: 23488968