666
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Designing novel cellulase systems through agent-based modeling and global sensitivity analysis

, &
Pages 243-253 | Received 08 Apr 2014, Accepted 08 May 2014, Published online: 15 May 2014

References

  • McArthur GH 4th, Fong SS. Toward engineering synthetic microbial metabolism. J Biomed Biotechnol 2010; 2010:459760; http://dx.doi.org/10.1155/2010/459760; PMID: 20037734
  • Gowen CM, Fong SS. Exploring biodiversity for cellulosic biofuel production. Chem Biodivers 2010; 7:1086 - 97; http://dx.doi.org/10.1002/cbdv.200900314; PMID: 20491068
  • Bayer EA, Kenig R, Lamed R. Adherence of Clostridium thermocellum to cellulose. J Bacteriol 1983; 156:818 - 27; PMID: 6630152
  • Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 2007; 18:237 - 45; http://dx.doi.org/10.1016/j.copbio.2007.04.004; PMID: 17462879
  • Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 2005; 69:124 - 54; http://dx.doi.org/10.1128/MMBR.69.1.124-154.2005; PMID: 15755956
  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 2003; 63:258 - 66; http://dx.doi.org/10.1007/s00253-003-1444-y; PMID: 13680206
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506 - 77; http://dx.doi.org/10.1128/MMBR.66.3.506-577.2002; PMID: 12209002
  • Shoham Y, Lamed R, Bayer EA. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 1999; 7:275 - 81; http://dx.doi.org/10.1016/S0966-842X(99)01533-4; PMID: 10390637
  • Raghothama S, Eberhardt RY, Simpson P, Wigelsworth D, White P, Hazlewood GP, Nagy T, Gilbert HJ, Williamson MP. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat Struct Biol 2001; 8:775 - 8; http://dx.doi.org/10.1038/nsb0901-775; PMID: 11524680
  • Berger E, Zhang D, Zverlov VV, Schwarz WH. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol Lett 2007; 268:194 - 201; http://dx.doi.org/10.1111/j.1574-6968.2006.00583.x; PMID: 17227469
  • Liu M, Gu J, Xie W, Yu H. Directed co-evolution of an endoglucanase and a β-glucosidase in Escherichia coli by a novel high-throughput screening method. [doi] Chem Commun (Camb) 2013; 49:7219 - 21; http://dx.doi.org/10.1039/c3cc42485e; PMID: 23841109
  • Yan P, Su L, Chen J, Wu J. Heterologous expression and biochemical characterization of an endo-β-1,4-glucanase from Thermobifida fusca. [doi] Biotechnol Appl Biochem 2013; 60:348 - 55; http://dx.doi.org/10.1002/bab.1097; PMID: 23631559
  • Toya Y, Hirasawa T, Morimoto T, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. (13)C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain. J Biotechnol 2014; 179:42 - 9; http://dx.doi.org/10.1016/j.jbiotec.2014.03.025; PMID: 24667539
  • Liu L, Liu C, Zou S, Yang H, Hong J, Ma Y, Zhang M. Expression of cellulase genes in Saccharomyces cerevisiae via δ-integration subject to auxotrophic markers. Biotechnol Lett 2013; 35:1303 - 7; http://dx.doi.org/10.1007/s10529-013-1205-7; PMID: 23609230
  • Akbarzadeh A, Ranaei Siadat SO, Motallebi M, Zamani MR, Barshan Tashnizi M, Moshtaghi S. Characterization and high level expression of acidic endoglucanase in Pichia pastoris. Appl Biochem Biotechnol 2014; 172:2253 - 65; http://dx.doi.org/10.1007/s12010-013-0672-6; PMID: 24347161
  • Li JX, Zhao LM, Wu RJ, Zheng ZJ, Zhang RJ. High-level overproduction of Thermobifida enzyme in Streptomyces lividans using a novel expression vector. Int J Mol Sci 2013; 14:18629 - 39; http://dx.doi.org/10.3390/ijms140918629; PMID: 24025422
  • Demain AL, Adrio JL. Contributions of microorganisms to industrial biology. Mol Biotechnol 2008; 38:41 - 55; http://dx.doi.org/10.1007/s12033-007-0035-z; PMID: 18060538
  • Karmakar M, Ray RR. Current trends in research and application of microbial cellulases. Research Journal of Microbiology 2011; 6:41 - 53; http://dx.doi.org/10.3923/jm.2011.41.53
  • Chandel AK, Chandrasekhar G, Silva MB, da Silva SS. The realm of cellulases in biorefinery development. Crit Rev Biotechnol 2012; 32:187 - 202; PMID: 21929293
  • Fischer CR, Klein-Marcuschamer D, Stephanopoulos G. Selection and optimization of microbial hosts for biofuels production. Metab Eng 2008; 10:295 - 304; http://dx.doi.org/10.1016/j.ymben.2008.06.009; PMID: 18655844
  • Gowen CM, Fong SS. Applications of systems biology towards microbial fuel production. Trends Microbiol 2011; 19:516 - 24; http://dx.doi.org/10.1016/j.tim.2011.07.005; PMID: 21871807
  • Jüergensen J, Ilmberger N, Streit WR. Screening for cellulases with industrial value and their use in biomass conversion microbial metabolic engineering. In: Cheng Q, ed.: Springer New York, 2012:1-16.
  • Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res 2011; 2011:280696; http://dx.doi.org/10.4061/2011/280696; PMID: 21912738
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science 2007; 315:801 - 4; http://dx.doi.org/10.1126/science.1139612; PMID: 17289987
  • Li DC, Li AN, Papageorgiou AC. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res 2011; 2011:308730; http://dx.doi.org/10.4061/2011/308730; PMID: 22145076
  • Santos VT, Esteves PJ, Milagres AM, Carvalho W. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. J Ind Microbiol Biotechnol 2011; 38:1089 - 98; http://dx.doi.org/10.1007/s10295-010-0888-1; PMID: 20953894
  • Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452 - 81; http://dx.doi.org/10.1016/j.biotechadv.2006.03.003; PMID: 16690241
  • Sørensen A, Teller PJ, Lübeck PS, Ahring BK. Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains. Appl Biochem Biotechnol 2011; 164:1058 - 70; http://dx.doi.org/10.1007/s12010-011-9194-2; PMID: 21360092
  • Koch A, Weigel CTO, Schulz G. Cloning, sequencing, and heterologous expression of a cellulase-encoding cDNA (cbh1) from Penicillium janthinellum. Gene 1993; 124:57 - 65; http://dx.doi.org/10.1016/0378-1119(93)90761-Q; PMID: 8440481
  • Mazzoli R, Lamberti C, Pessione E. Engineering new metabolic capabilities in bacteria: Lessons from recombinant cellulolytic strategies. Trends Biotechnol 2012; 30:111 - 9; PMID: 21930321
  • Bonabeau E. Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci U S A 2002; 99:Suppl 3 7280 - 7; http://dx.doi.org/10.1073/pnas.082080899; PMID: 12011407
  • Scholl HJ. Agent-based and system dynamics modeling: A call for cross study and joint research. System Sciences, 2001 Proceedings of the 34th Annual Hawaii International Conference on 2001:8 pp.
  • Van Dyke Parunak H, Savit R, Riolo R. Agent-based modeling vs. equation-based modeling: A case study and users’ guide multi-agent systems and agent-based simulation. In: Sichman J, Conte R, Gilbert N, eds.: Springer Berlin / Heidelberg, 1998:277-283.
  • Saltelli A, Chan K, Scott M. Sensitivity analysis. Wiley 2000.
  • Saltelli A, Ratto M, Andres T, Camplongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S. Global sensitivity analysis: The primer. Wiley 2008.
  • Ogejo JA, Senger RS, Zhang RH. Global sensitivity analysis of a process-based model for ammonia emissions from manure storage and treatment structures. Atmos Environ 2010; 44:3621 - 9; http://dx.doi.org/10.1016/j.atmosenv.2010.06.053
  • Chen S, Wilson DB. Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol 2007; 189:6260 - 5; http://dx.doi.org/10.1128/JB.00584-07; PMID: 17601791
  • Dadi AP, Schall CA, Varanasi S. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 2007; 137-140:407 - 21; http://dx.doi.org/10.1007/s12010-007-9068-9; PMID: 18478405
  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008; 26:553 - 60; http://dx.doi.org/10.1038/nbt1403; PMID: 18454138
  • Raman B, Pan C, Hurst GB, Rodriguez M Jr., McKeown CK, Lankford PK, Samatova NF, Mielenz JR. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 2009; 4:e5271; http://dx.doi.org/10.1371/journal.pone.0005271; PMID: 19384422
  • Levine SE, Fox JM, Clark DS, Blanch HW. A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng 2011; 108:2561 - 70; http://dx.doi.org/10.1002/bit.23249; PMID: 21702033
  • Liao H, Zhang XZ, Rollin JA, Zhang YH. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Biotechnol J 2011; 6:1409 - 18; http://dx.doi.org/10.1002/biot.201100157; PMID: 21751395
  • Badieyan S, Bevan DR, Zhang C. Study and design of stability in GH5 cellulases. Biotechnol Bioeng 2012; 109:31 - 44; http://dx.doi.org/10.1002/bit.23280; PMID: 21809329
  • Binner R, Menath V, Huber H, Thomm M, Bischof F, Schmack D, Reuter M. Comparative study of stability and half-life of enzymes and enzyme aggregates implemented in anaerobic biogas processes. Biomass Conversion and Biorefinery 2011; 1:1 - 8; http://dx.doi.org/10.1007/s13399-010-0002-y
  • Lin H, Li W, Guo C, Qu S, Ren N. Advances in the study of directed evolution for cellulases. Front Environ Sci Eng China 2011; 5:519 - 25; http://dx.doi.org/10.1007/s11783-011-0326-2
  • Lozano P, Bernal B, Bernal JM, Pucheault M, Vaultier M. Stabilizing immobilized cellulase by ionic liquids for saccharification of cellulose solutions in 1-butyl-3-methylimidazolium chloride. Green Chem 2011; 13:1406 - 10; http://dx.doi.org/10.1039/c1gc15294g
  • Myung S, Zhang XZ, Zhang YH. Ultra-stable phosphoglucose isomerase through immobilization of cellulose-binding module-tagged thermophilic enzyme on low-cost high-capacity cellulosic adsorbent. Biotechnol Prog 2011; 27:969 - 75; http://dx.doi.org/10.1002/btpr.606; PMID: 21630486
  • Park JI, Kent MS, Datta S, Holmes BM, Huang Z, Simmons BA, Sale KL, Sapra R. Enzymatic hydrolysis of cellulose by the cellobiohydrolase domain of CelB from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus. Bioresour Technol 2011; 102:5988 - 94; http://dx.doi.org/10.1016/j.biortech.2011.02.036; PMID: 21421309
  • Wilensky U. Netlogo. 1999
  • Apte AA, Cain JW, Bonchev DG, Fong SS. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs. J Biol Eng 2008; 2:2; http://dx.doi.org/10.1186/1754-1611-2-2; PMID: 18304325

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.