1,420
Views
11
CrossRef citations to date
0
Altmetric
Addendum

Producing recombinant therapeutic glycoproteins with enhanced sialylation using CHO-gmt4 glycosylation mutant cells

, , , , , , & show all
Pages 269-273 | Received 12 May 2014, Accepted 05 Jun 2014, Published online: 09 Jun 2014

References

  • Hudgin RL, Pricer WE Jr., Ashwell G, Stockert RJ, Morell AG. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem 1974; 249:5536 - 43; PMID: 4370480
  • Morell AG, Gregoriadis G, Scheinberg IH, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem 1971; 246:1461 - 7; PMID: 5545089
  • Fukuda MN, Sasaki H, Lopez L, Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 1989; 73:84 - 9; PMID: 2910371
  • Sodetz JM, Pizzo SV, McKee PA. Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. J Biol Chem 1977; 252:5538 - 46; PMID: 301877
  • Batta SK, Rabovsky MA, Channing CP, Bahl OP. Effect of removal of carbohydrate residues upon the half life and in vivo biological activity of human chorionic gonadotropin. Adv Exp Med Biol 1979; 112:749 - 56; http://dx.doi.org/10.1007/978-1-4684-3474-3_84; PMID: 572624
  • Grabenhorst E, Schlenke P, Pohl S, Nimtz M, Conradt HS. Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconj J 1999; 16:81 - 97; http://dx.doi.org/10.1023/A:1026466408042; PMID: 10612409
  • Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 2009; 19:936 - 49; http://dx.doi.org/10.1093/glycob/cwp079; PMID: 19494347
  • Goh JSY, Zhang P, Chan KF, Lee MM, Lim SF, Song Z. RCA-I-resistant CHO mutant cells have dysfunctional GnT I and expression of normal GnT I in these mutants enhances sialylation of recombinant erythropoietin. Metab Eng 2010; 12:360 - 8; http://dx.doi.org/10.1016/j.ymben.2010.03.002; PMID: 20346410
  • Goh JS, Liu Y, Liu H, Chan KF, Wan C, Teo G, Zhou X, Xie F, Zhang P, Zhang Y, et al. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Biotechnol J 2014; 9:100 - 9; http://dx.doi.org/10.1002/biot.201300301; PMID: 24166780
  • Lim SF, Lee MM, Zhang P, Song Z. The Golgi CMP-sialic acid transporter: A new CHO mutant provides functional insights. Glycobiology 2008; 18:851 - 60; http://dx.doi.org/10.1093/glycob/cwn080; PMID: 18713811
  • Zhang P, Chan KF, Haryadi R, Bardor M, Song Z. CHO glycosylation mutants as potential host cells to produce therapeutic proteins with enhanced efficacy. Adv Biochem Eng Biotechnol 2013; 131:63 - 87; http://dx.doi.org/10.1007/10_2012_163; PMID: 23142953
  • Iskratsch T, Braun A, Paschinger K, Wilson IB. Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem 2009; 386:133 - 46; http://dx.doi.org/10.1016/j.ab.2008.12.005; PMID: 19123999
  • Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med 2013; 34:590 - 600; http://dx.doi.org/10.1016/j.mam.2012.12.004; PMID: 23506892
  • Patnaik SK, Stanley P. Lectin-resistant CHO glycosylation mutants. Methods Enzymol 2006; 416:159 - 82; http://dx.doi.org/10.1016/S0076-6879(06)16011-5; PMID: 17113866
  • Kumar R, Yang J, Larsen RD, Stanley P. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci U S A 1990; 87:9948 - 52; http://dx.doi.org/10.1073/pnas.87.24.9948; PMID: 1702225
  • Chen W, Stanley P. Five Lec1 CHO cell mutants have distinct Mgat1 gene mutations that encode truncated N-acetylglucosaminyltransferase I. Glycobiology 2003; 13:43 - 50; http://dx.doi.org/10.1093/glycob/cwg003; PMID: 12634323
  • Zhong X, Cooley C, Seth N, Juo ZS, Presman E, Resendes N, Kumar R, Allen M, Mosyak L, Stahl M, et al. Engineering novel Lec1 glycosylation mutants in CHO-DUKX cells: molecular insights and effector modulation of N-acetylglucosaminyltransferase I. Biotechnol Bioeng 2012; 109:1723 - 34; http://dx.doi.org/10.1002/bit.24448; PMID: 22252477
  • Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N. Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 2013; 167:24 - 32; http://dx.doi.org/10.1016/j.jbiotec.2013.06.006; PMID: 23777858
  • Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci U S A 2002; 99:13419 - 24; http://dx.doi.org/10.1073/pnas.212519299; PMID: 12370423
  • Opat AS, Puthalakath H, Burke J, Gleeson PA. Genetic defect in N-acetylglucosaminyltransferase I gene of a ricin-resistant baby hamster kidney mutant. Biochem J 1998; 336:593 - 8; PMID: 9841870
  • Zhang P, Tan DL, Heng D, Wang T, Mariati, Yang Y, Song Z. A functional analysis of N-glycosylation-related genes on sialylation of recombinant erythropoietin in six commonly used mammalian cell lines. Metab Eng 2010; 12:526 - 36; http://dx.doi.org/10.1016/j.ymben.2010.08.004; PMID: 20826224
  • Lin N, Davis D, Sealover NR, Mascarenhas J, George HJ, Kayser KJ. Mgat4 May Play a Role in Increased Sialylation by Overexpressing Functional MGAT1 in Mgat1-Disrupted Chinese Hamster Ovary (CHO) Cells. Poster presented at: BioProcess International™ Conference and Exhibition 2013; September 2013; Boston, MA, USA.
  • Furbish FS, Steer CJ, Krett NL, Barranger JA. Uptake and distribution of placental glucocerebrosidase in rat hepatic cells and effects of sequential deglycosylation. Biochim Biophys Acta 1981; 673:425 - 34; http://dx.doi.org/10.1016/0304-4165(81)90474-8; PMID: 6784774
  • Barton NW, Brady RO, Dambrosia JM, Di Bisceglie AM, Doppelt SH, Hill SC, Mankin HJ, Murray GJ, Parker RI, Argoff CE, et al. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher’s disease. N Engl J Med 1991; 324:1464 - 70; http://dx.doi.org/10.1056/NEJM199105233242104; PMID: 2023606
  • Brumshtein B, Salinas P, Peterson B, Chan V, Silman I, Sussman JL, Savickas PJ, Robinson GS, Futerman AH. Characterization of gene-activated human acid-beta-glucosidase: crystal structure, glycan composition, and internalization into macrophages. Glycobiology 2010; 20:24 - 32; http://dx.doi.org/10.1093/glycob/cwp138; PMID: 19741058
  • Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 2007; 5:579 - 90; http://dx.doi.org/10.1111/j.1467-7652.2007.00263.x; PMID: 17524049
  • Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, Ganesa C, Reczek D, Ward PV, Kutzko JP, et al. Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. Glycobiology 2007; 17:467 - 78; http://dx.doi.org/10.1093/glycob/cwm008; PMID: 17251309
  • Lam JS, Mansour MK, Specht CA, Levitz SM. A model vaccine exploiting fungal mannosylation to increase antigen immunogenicity. J Immunol 2005; 175:7496 - 503; http://dx.doi.org/10.4049/jimmunol.175.11.7496; PMID: 16301657
  • Betting DJ, Mu XY, Kafi K, McDonnel D, Rosas F, Gold DP, Timmerman JM. Enhanced immune stimulation by a therapeutic lymphoma tumor antigen vaccine produced in insect cells involves mannose receptor targeting to antigen presenting cells. Vaccine 2009; 27:250 - 9; http://dx.doi.org/10.1016/j.vaccine.2008.10.055; PMID: 19000731

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.