823
Views
22
CrossRef citations to date
0
Altmetric
Report

Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial

, &
Pages 174-181 | Received 21 Jul 2011, Accepted 16 Nov 2011, Published online: 01 Oct 2011

References

  • Sugahara K, Mikami T. Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 2007; 17:536 - 45; http://dx.doi.org/10.1016/j.sbi.2007.08.015; PMID: 17928217
  • Kwok JCF, Afshari F, Garcia-Alias G, Fawcett J. Proteoglycans in the central nervous system: Plasticity, regeneration and their stimulation with chondroitinase ABC. Restor Neurol Neurosci 2008; 26:131 - 45; PMID: 18820407
  • Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 2003; 423:443 - 8; http://dx.doi.org/10.1038/nature01635; PMID: 12761550
  • Gama CI, Tully SE, Sotogaku N, Clark PM, Rawat M, Vaidehi N, et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nat Chem Biol 2006; 2:467 - 73; http://dx.doi.org/10.1038/nchembio810; PMID: 16878128
  • Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci 2005; 21:378 - 90; http://dx.doi.org/10.1111/j.1460-9568.2005.03876.x; PMID: 15673437
  • Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV. CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 2005; 29:545 - 58; http://dx.doi.org/10.1016/j.mcn.2005.04.006; PMID: 15936953
  • Clement AM, Sugahara K, Faissner A. Chondroitin sulfate E promotes neurite outgrowth of rat embryonic day 18 hippocampal neurons. Neurosci Lett 1999; 269:125 - 8; http://dx.doi.org/10.1016/S0304-3940(99)00432-2; PMID: 10454148
  • Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P. Differential effects of glycosaminoglycans on neurite outgrowth from hippocampal and thalamic neurones. J Cell Sci 1994; 107:1437 - 48; PMID: 7962187
  • Tully SE, Mabon R, Gama CI, Tsai SM, Liu X, Hsieh-Wilson LC. A chondroitin sulfate small molecule that stimulates neuronal growth. J Am Chem Soc 2004; 126:7736 - 7; http://dx.doi.org/10.1021/ja0484045; PMID: 15212495
  • Snow DM, Brown EM, Letourneau PC. Growth cone behavior in the presence of soluble chondroitin sulfate proteoglycan (CSPG), compared to behavior on CSPG bound to laminin or fibronectin. Int J Dev Neurosci 1996; 14:331 - 49; http://dx.doi.org/10.1016/0736-5748(96)00017-2; PMID: 8842808
  • Dillon GP, Yu XJ, Bellamkonda RV. The polarity and magnitude of ambient charge influences three-dimensional neurite extension from DRGs. J Biomed Mater Res 2000; 51:510 - 9; http://dx.doi.org/10.1002/1097-4636(20000905)51:3<510::AID-JBM28>3.0.CO;2-G; PMID: 10880096
  • Yu X, Bellamkonda RV. Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J Neurosci Res 2001; 66:303 - 10; http://dx.doi.org/10.1002/jnr.1225; PMID: 11592128
  • Hwang NS, Varghese S, Lee HJ, Theprungsirikul P, Canver A, Sharma B, et al. Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS Lett 2007; 581:4172 - 8; http://dx.doi.org/10.1016/j.febslet.2007.07.049; PMID: 17692846
  • Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 2008; 27:12 - 21; http://dx.doi.org/10.1016/j.matbio.2007.07.002; PMID: 17689060
  • Liu Y, Cai SS, Shu XZ, Shelby J, Prestwich GD. Release of basic fibroblast growth factor from a cross-linked glycosaminoglycan hydrogel promotes wound healing. Wound Repair Regen 2007; 15:245 - 51; http://dx.doi.org/10.1111/j.1524-475X.2007.00211.x; PMID: 17352757
  • Piai JF, Rubira AF, Muniz EC. Self-assembly of a swollen chitosan/chondroitin sulfate hydrogel by outward diffusion of the chondroitin sulfate chains. Acta Biomater 2009; 5:2601 - 9; http://dx.doi.org/10.1016/j.actbio.2009.03.035; PMID: 19394902
  • Sakiyama-Elbert SE, Hubbell JA. Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 2000; 69:149 - 58; http://dx.doi.org/10.1016/S0168-3659(00)00296-0; PMID: 11018553
  • Sakiyama-Elbert SE, Hubbell JA. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 2000; 65:389 - 402; http://dx.doi.org/10.1016/S0168-3659(99)00221-7; PMID: 10699297
  • Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol 2005; 12:267 - 77; http://dx.doi.org/10.1016/j.chembiol.2004.11.020; PMID: 15797210
  • Willerth SM, Johnson PJ, Maxwell DJ, Parsons SR, Doukas ME, Sakiyama-Elbert SE. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. J Biomed Mater Res A 2007; 80:13 - 23; http://dx.doi.org/10.1002/jbm.a.30844; PMID: 16958043
  • Wood MD, Borschel GH, Sakiyama-Elbert SE. Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an affinity-based delivery system. J Biomed Mater Res A 2009; 89:909 - 18; http://dx.doi.org/10.1002/jbm.a.32043; PMID: 18465825
  • Maxwell DJ, Hicks BC, Parsons S, Sakiyama-Elbert SE. Development of rationally designed affinity-based drug delivery systems. Acta Biomater 2005; 1:101 - 13; http://dx.doi.org/10.1016/j.actbio.2004.09.002; PMID: 16701784
  • Wood MD, Moore AM, Hunter DA, Tuffaha S, Borschel GH, Mackinnon SE, et al. Affinity-based release of glial-derived neurotrophic factor from fibrin matrices enhances sciatic nerve regeneration. Acta Biomater 2009; 5:959 - 68; http://dx.doi.org/10.1016/j.actbio.2008.11.008; PMID: 19103514
  • Seal BL, Panitch A. Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 2003; 4:1572 - 82; http://dx.doi.org/10.1021/bm0342032; PMID: 14606882
  • Seal BL, Panitch A. Physical matrices stabilized by enzymatically sensitive covalent cross-links. Acta Biomater 2006; 2:241 - 51; http://dx.doi.org/10.1016/j.actbio.2005.12.008; PMID: 16701884
  • Seal BL, Panitch A. Viscoelastic behavior of environmentally sensitive biomimetic polymer matrices. Macromolecules 2006; 39:2268 - 74; http://dx.doi.org/10.1021/ma0524528
  • Jeong KJ, Panitch A. Interplay between covalent and physical interactions within environment sensitive hydrogels. Biomacromolecules 2009; 10:1090 - 9; http://dx.doi.org/10.1021/bm801270k; PMID: 19301930
  • Conovaloff A, Panitch A. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration. J Neural Eng 2011; 8:056003; http://dx.doi.org/10.1088/1741-2560/8/5/056003; PMID: 21804177
  • Butterfield KC, Conovaloff A, Caplan M, Panitch A. Chondroitin sulfate-binding peptides block chondroitin 6-sulfate inhibition of cortical neurite growth. Neurosci Lett 2010; 478:82 - 7; http://dx.doi.org/10.1016/j.neulet.2010.04.070; PMID: 20450957
  • Conovaloff A, Beier B, Irazoqui P, Panitch A. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels. Biomatter 2011; In press
  • Hains BC, Black JA, Waxman SG. Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 2003; 462:328 - 41; http://dx.doi.org/10.1002/cne.10733; PMID: 12794736
  • Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 2005; 15:116 - 20; http://dx.doi.org/10.1016/j.conb.2005.03.018; PMID: 15721753
  • Zhou FQ, Walzer M, Wu YH, Zhou J, Dedhar S, Snider WD. Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism. J Cell Sci 2006; 119:2787 - 96; http://dx.doi.org/10.1242/jcs.03016; PMID: 16772333
  • Bloch J, Fine EG, Bouche N, Zurn AD, Aebischer P. Nerve growth factor- and neurotrophin-3-releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 2001; 172:425 - 32; http://dx.doi.org/10.1006/exnr.2001.7778; PMID: 11716566
  • Colangelo AM, Finotti N, Ceriani M, Alberghina L, Martegani E, Aloe L, et al. Recombinant human nerve growth factor with a marked activity in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102:18658 - 63; http://dx.doi.org/10.1073/pnas.0508734102; PMID: 16339317
  • Romero MI, Rangappa N, Garry MG, Smith GM. Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 2001; 21:8408 - 16; PMID: 11606629
  • Yu LMY, Leipzig ND, Shoichet MS. Promoting neuron adhesion and growth. Mater Today 2008; 11:36 - 43; http://dx.doi.org/10.1016/S1369-7021(08)70088-9
  • Butterfield KC, Caplan M, Panitch A. Identification and sequence composition characterization of chondroitin sulfate-binding peptides through peptide array screening. Biochemistry 2010; 49:1549 - 55; http://dx.doi.org/10.1021/bi9021044; PMID: 20095636
  • Eng D, Caplan M, Preul M, Panitch A. Hyaluronan scaffolds: A balance between backbone functionalization and bioactivity. Acta Biomater 2010; 6:2407 - 14; http://dx.doi.org/10.1016/j.actbio.2009.12.049; PMID: 20051273
  • Brewer GJ. Serum-free B27/Neurobasal medium supports differentiated growth of neurons from the striatum, substantia-nigra, septum, cerebral-cortex, cerebellum, and dentate gyrus. J Neurosci Res 1995; 42:674 - 83; http://dx.doi.org/10.1002/jnr.490420510; PMID: 8600300