882
Views
26
CrossRef citations to date
0
Altmetric
Review

Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure

New developments and challenges

&
Pages 1-14 | Received 08 Sep 2011, Accepted 20 Jan 2012, Published online: 01 Jan 2012

References

  • A & M Mind Power Solutions. Cardiovascular Device & Diagnosis Market January 1, 2011 Pub ID: AMPS6065538.
  • de Muinck ED. Gene and cell therapy for heart failure. Antioxid Redox Signal 2009; 11:2025 - 42; http://dx.doi.org/10.1089/ars.2009.2495; PMID: 19416058
  • Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008; 7:131 - 42; http://dx.doi.org/10.1038/nrd2403; PMID: 18079756
  • Lees JG, Lim SA, Croll T, Williams G, Lui S, Cooper-White J, et al. Transplantation of 3D scaffolds seeded with human embryonic stem cells: biological features of surrogate tissue and teratoma-forming potential. Regen Med 2007; 2:289 - 300; http://dx.doi.org/10.2217/17460751.2.3.289; PMID: 17511565
  • Weissman IL. Medicine: politic stem cells. Nature 2006; 439:145 - 7; http://dx.doi.org/10.1038/439145a; PMID: 16407938
  • Weissman IL. Stem cells--scientific, medical, and political issues. N Engl J Med 2002; 346:1576 - 9; http://dx.doi.org/10.1056/NEJMsb020693; PMID: 11994551
  • Ryu JH, Kim IK, Cho SW, Cho MC, Hwang KK, Piao H, et al. Implantation of bone marrow mononuclear cells using injectable fibrin matrix enhances neovascularization in infarcted myocardium. Biomaterials 2005; 26:319 - 26; http://dx.doi.org/10.1016/j.biomaterials.2004.02.058; PMID: 15262474
  • Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 2001; 104:2063 - 8; http://dx.doi.org/10.1161/hc4201.097192; PMID: 11673347
  • Shimizu T. Myocardial Tissue Engineering. In: Eberli D, ed. Tissue Engineering for Tissue and Organ Regeneration. InTech, 2011.
  • Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6:230 - 47; http://dx.doi.org/10.1097/00007890-196803000-00009; PMID: 5654088
  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114:763 - 76; http://dx.doi.org/10.1016/S0092-8674(03)00687-1; PMID: 14505575
  • Gandia C, Armiñan A, Garci´a-Verdugo JM, Lledo´ E, Ruiz A, Miñana MD, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2008; 26:638 - 45; http://dx.doi.org/10.1634/stemcells.2007-0484; PMID: 18079433
  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010; 142:375 - 86; http://dx.doi.org/10.1016/j.cell.2010.07.002; PMID: 20691899
  • Seale P, Asakura A, Rudnicki MA. The potential of muscle stem cells. Dev Cell 2001; 1:333 - 42; http://dx.doi.org/10.1016/S1534-5807(01)00049-1; PMID: 11702945
  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 1999; 100:II63 - 9; http://dx.doi.org/10.1161/01.CIR.100.suppl_2.II-63; PMID: 10567280
  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, et al. Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium?. Circulation 2000; 102:III56 - 61; http://dx.doi.org/10.1161/01.CIR.102.suppl3.III-56; PMID: 11082363
  • Kamelger FS, Marksteiner R, Margreiter E, Klima G, Wechselberger G, Hering S, et al. A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. Biomaterials 2004; 25:1649 - 55; http://dx.doi.org/10.1016/S0142-9612(03)00520-9; PMID: 14697866
  • Li RK. Cell transplantation to improve heart function: cell or matrix. Yonsei Med J 2004; 45:S72 - 3
  • Krupnick AS, Kreisel D, Szeto WY, Popma SH, Rosengard BR. A murine model of left ventricular tissue engineering. J Heart Lung Transplant 2001; 20:197 - 8; http://dx.doi.org/10.1016/S1053-2498(00)00417-4; PMID: 11250343
  • Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li RK. Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 2003; 108:Suppl 1 II219 - 25; http://dx.doi.org/10.1161/01.cir.0000087450.34497.9a; PMID: 12970236
  • Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FWH, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004; 287:H480 - 7; http://dx.doi.org/10.1152/ajpheart.01232.2003; PMID: 15277191
  • Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 2000; 119:368 - 75; http://dx.doi.org/10.1016/S0022-5223(00)70193-0; PMID: 10649213
  • Lanza R, Moore MA, Wakayama T, Perry AC, Shieh JH, Hendrikx J, et al. Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circ Res 2004; 94:820 - 7; http://dx.doi.org/10.1161/01.RES.0000120863.53562.DF; PMID: 14764454
  • Lee MS, Makkar RR. Stem-cell transplantation in myocardial infarction: a status report. Ann Intern Med 2004; 140:729 - 37; PMID: 15126257
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917 - 20; http://dx.doi.org/10.1126/science.1151526; PMID: 18029452
  • Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 2004; 279:11384 - 91; http://dx.doi.org/10.1074/jbc.M310822200; PMID: 14702342
  • Forte G, Pietronave S, Nardone G, Zamperone A, Magnani E, Pagliari S, et al. Human cardiac progenitor cell grafts as unrestricted source of supernumerary cardiac cells in healthy murine hearts. Stem Cells 2011; 29:2051 - 61; http://dx.doi.org/10.1002/stem.763; PMID: 22009661
  • Branco E, Fioretto ET, Cabral R, Palmera CA, Gregores GB, Stopiglia AJ, et al. Myocardial homing after intrapericardial infusion of bone marrow mononuclear cells. Arq Bras Cardiol 2009; 93:e50 - 3; http://dx.doi.org/10.1590/S0066-782X2009000900021; PMID: 19851642
  • Choi YS, Matsuda K, Dusting GJ, Morrison WA, Dilley RJ. Engineering cardiac tissue in vivo from human adipose-derived stem cells. Biomaterials 2010; 31:2236 - 42; http://dx.doi.org/10.1016/j.biomaterials.2009.11.097; PMID: 20031204
  • Pojda Z, Machaj EK, Ołdak T, Gajkowska A, Jastrzewska M. Nonhematopoietic stem cells of fetal origin--how much of today’s enthusiasm will pass the time test?. Folia Histochem Cytobiol 2005; 43:209 - 12; PMID: 16382886
  • Bui QT, Gertz ZM, Wilensky RL. Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell Res Ther 2010; 1:29; http://dx.doi.org/10.1186/scrt29; PMID: 20863415
  • Bers DM. Cardiac excitation-contraction coupling. Nature 2002; 415:198 - 205; http://dx.doi.org/10.1038/415198a; PMID: 11805843
  • Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, et al. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 1995; 92:1169 - 78; PMID: 7648662
  • Schwinger RH, Böhm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 1995; 92:3220 - 8; PMID: 7586307
  • Field ML, Azzawi A, Unitt JF, Seymour AM, Henderson C, Radda GK. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart. J Mol Cell Cardiol 1996; 28:65 - 77; http://dx.doi.org/10.1006/jmcc.1996.0007; PMID: 8745215
  • Egger M, Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Membr Biol 1999; 168:107 - 30; http://dx.doi.org/10.1007/s002329900502; PMID: 10089232
  • Silverman HS, Stern MD. Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 1994; 28:581 - 97; http://dx.doi.org/10.1093/cvr/28.5.581; PMID: 8025901
  • Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 2000; 47:446 - 56; http://dx.doi.org/10.1016/S0008-6363(00)00078-X; PMID: 10963718
  • Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, et al. Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 2003; 92:e52 - 9; http://dx.doi.org/10.1161/01.RES.0000064585.95749.6D; PMID: 12623875
  • Burkard N, Rokita AG, Kaufmann SG, Hallhuber M, Wu R, Hu K, et al. Conditional neuronal nitric oxide synthase overexpression impairs myocardial contractility. Circ Res 2007; 100:e32 - 44; http://dx.doi.org/10.1161/01.RES.0000259042.04576.6a; PMID: 17272813
  • Gonzalez DR, Beigi F, Treuer AV, Hare JM. Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci U S A 2007; 104:20612 - 7; http://dx.doi.org/10.1073/pnas.0706796104; PMID: 18077344
  • Minezaki KK, Suleiman MS, Chapman RA. Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload. J Physiol 1994; 476:459 - 71; PMID: 8057254
  • Minatoguchi S, Takemura G, Chen XH, Wang N, Uno Y, Koda M, et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 2004; 109:2572 - 80; http://dx.doi.org/10.1161/01.CIR.0000129770.93985.3E; PMID: 15123535
  • Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992; 257:387 - 9; http://dx.doi.org/10.1126/science.1631560; PMID: 1631560
  • White HD, Norris RM, Brown MA, Brandt PWT, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987; 76:44 - 51; http://dx.doi.org/10.1161/01.CIR.76.1.44; PMID: 3594774
  • De La Luz Sierra M, Yang F, Narazaki M, Salvucci O, Davis D, Yarchoan R, et al. Differential processing of stromal-derived factor-1alpha and stromal-derived factor-1beta explains functional diversity. Blood 2004; 103:2452 - 9; http://dx.doi.org/10.1182/blood-2003-08-2857; PMID: 14525775
  • Zou Y, Takano H, Mizukami M, Akazawa H, Qin Y, Toko H, et al. Leukemia inhibitory factor enhances survival of cardiomyocytes and induces regeneration of myocardium after myocardial infarction. Circulation 2003; 108:748 - 53; http://dx.doi.org/10.1161/01.CIR.0000081773.76337.44; PMID: 12860906
  • Musarò A, Giacinti C, Borsellino G, Dobrowolny G, Pelosi L, Cairns L, et al. Stem cell-mediated muscle regeneration is enhanced by local isoform of insulin-like growth factor 1. Proc Natl Acad Sci U S A 2004; 101:1206 - 10; http://dx.doi.org/10.1073/pnas.0303792101; PMID: 14745025
  • Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, et al. Recombinant human erythropoietin protects the myocardium from ischemia-reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci U S A 2003; 100:4802 - 6; http://dx.doi.org/10.1073/pnas.0630444100; PMID: 12663857
  • Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006; 10:267 - 80; http://dx.doi.org/10.1517/14728222.10.2.267; PMID: 16548775
  • Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 2004; 94:1543 - 53; http://dx.doi.org/10.1161/01.RES.0000130526.20854.fa; PMID: 15217919
  • Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y, et al. Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 2004; 18:851 - 3; PMID: 15001565
  • Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003; 102:1340 - 6; http://dx.doi.org/10.1182/blood-2003-01-0223; PMID: 12702503
  • Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 2004; 109:2454 - 61; http://dx.doi.org/10.1161/01.CIR.0000128213.96779.61; PMID: 15148275
  • Kang HJ, Kim MK, Kim MG, Choi DJ, Yoon JH, Park YB, et al. A multicenter, prospective, randomized, controlled trial evaluating the safety and efficacy of intracoronary cell infusion mobilized with granulocyte colony-stimulating factor and darbepoetin after acute myocardial infarction: study design and rationale of the ‘MAGIC cell-5-combination cytokine trial’. Trials 2011; 12:33; http://dx.doi.org/10.1186/1745-6215-12-33; PMID: 21299845
  • Mourkioti F, Rosenthal N. IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 2005; 26:535 - 42; http://dx.doi.org/10.1016/j.it.2005.08.002; PMID: 16109502
  • Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 1993; 92:2303 - 12; http://dx.doi.org/10.1172/JCI116834; PMID: 8227345
  • Goldhaber JI. Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol 1996; 271:H823 - 33; PMID: 8853314
  • Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature 2002; 415:240 - 3; http://dx.doi.org/10.1038/415240a; PMID: 11805849
  • Esposito E, Cuzzocrea S. TNF-alpha as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem 2009; 16:3152 - 67; http://dx.doi.org/10.2174/092986709788803024; PMID: 19689289
  • Sarzi-Puttini P, Atzeni F, Shoenfeld Y, Ferraccioli G. TNF-alpha, rheumatoid arthritis, and heart failure: a rheumatological dilemma. Autoimmun Rev 2005; 4:153 - 61; http://dx.doi.org/10.1016/j.autrev.2004.09.004; PMID: 15823501
  • Cross M, Dexter TM. Growth factors in development, transformation, and tumorigenesis. Cell 1991; 64:271 - 80; http://dx.doi.org/10.1016/0092-8674(91)90638-F; PMID: 1988148
  • Sharma P, Maffulli N. Basic biology of tendon injury and healing. Surgeon 2005; 3:309 - 16; http://dx.doi.org/10.1016/S1479-666X(05)80109-X; PMID: 16245649
  • Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 2006; 6:181 - 90; PMID: 16849830
  • DeWitt A, Iida T, Lam HY, Hill V, Wiley HS, Lauffenburger DA. Affinity regulates spatial range of EGF receptor autocrine ligand binding. Dev Biol 2002; 250:305 - 16; http://dx.doi.org/10.1006/dbio.2002.0807; PMID: 12376105
  • Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 2004; 306:247 - 52; http://dx.doi.org/10.1126/science.1102612; PMID: 15472070
  • Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004; 113:516 - 27; PMID: 14966561
  • Abrahamsson SO, Lohmander S. Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons. J Orthop Res 1996; 14:370 - 6; http://dx.doi.org/10.1002/jor.1100140305; PMID: 8676248
  • Banes AJ, Tsuzaki M, Hu P, Brigman B, Brown T, Almekinders L, et al. PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 1995; 28:1505 - 13; http://dx.doi.org/10.1016/0021-9290(95)00098-4; PMID: 8666590
  • Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 1997; 100:321 - 30; http://dx.doi.org/10.1172/JCI119537; PMID: 9218508
  • Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999; 79:1283 - 316; PMID: 10508235
  • Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006; 3:589 - 601; http://dx.doi.org/10.1098/rsif.2006.0124; PMID: 16971328
  • Langer R, Vacanti JP. Tissue engineering. Science 1993; 260:920 - 6; http://dx.doi.org/10.1126/science.8493529; PMID: 8493529
  • Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol 2001; 280:H168 - 78; PMID: 11123231
  • Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol 2004; 15:430 - 4; http://dx.doi.org/10.1016/j.copbio.2004.08.007; PMID: 15464373
  • Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004; 25:1639 - 47; http://dx.doi.org/10.1016/S0142-9612(03)00521-0; PMID: 14697865
  • de Muinck ED. Gene and cell therapy for heart failure. Antioxid Redox Signal 2009; 11:2025 - 42; http://dx.doi.org/10.1089/ars.2009.2495; PMID: 19416058
  • Fischer A. The interaction of two fragments of pulsating heart tissue. J Exp Med 1924; 39:577 - 84; http://dx.doi.org/10.1084/jem.39.4.577; PMID: 19868867
  • Lewis MR. Muscular contraction in tissue cultures. Contrib Embryol Carnegie Inst 1920; 9:191 - 212
  • Moscona AA. Tissues from dissociated cells. Sci Am 1959; 200:132 - 4, passim; http://dx.doi.org/10.1038/scientificamerican0559-132; PMID: 13646649
  • McDonald TF, Sachs HG, DeHaan RL. Development of sensitivity to tetrodotoxin in beating chick embryo hearts, single cells, and aggregates. Science 1972; 176:1248 - 50; http://dx.doi.org/10.1126/science.176.4040.1248; PMID: 5033643
  • Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 2002; 90:e40; http://dx.doi.org/10.1161/hh0302.105722; PMID: 11861428
  • Simpson DG, Terracio L, Terracio M, Price RL, Turner DC, Borg TK. Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol 1994; 161:89 - 105; http://dx.doi.org/10.1002/jcp.1041610112; PMID: 7929612
  • Terracio L, Miller B, Borg TK. Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 1988; 24:53 - 8; http://dx.doi.org/10.1007/BF02623815; PMID: 3276657
  • Vandenburgh HH, Karlisch P, Farr L. Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel. In Vitro Cell Dev Biol 1988; 24:166 - 74; http://dx.doi.org/10.1007/BF02623542; PMID: 3350785
  • Kolodney MS, Elson EL. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J Biol Chem 1993; 268:23850 - 5; PMID: 8226923
  • Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, et al. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 1999; 64:580 - 9; http://dx.doi.org/10.1002/(SICI)1097-0290(19990905)64:5<580::AID-BIT8>3.0.CO;2-X; PMID: 10404238
  • Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation 1999; 100:Suppl II63 - 9; PMID: 10567280
  • Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, et al. Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium?. Circulation 2000; 102:Suppl 3 III56 - 61; PMID: 11082363
  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 2004; 101:18129 - 34; http://dx.doi.org/10.1073/pnas.0407817101; PMID: 15604141
  • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials 2000; 21:2335 - 46; http://dx.doi.org/10.1016/S0142-9612(00)00101-0; PMID: 11055281
  • Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 1998; 16:224 - 30; http://dx.doi.org/10.1016/S0167-7799(98)01191-3; PMID: 9621462
  • van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, et al. Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 1987; 8:323 - 8; http://dx.doi.org/10.1016/0142-9612(87)90001-9; PMID: 3676418
  • Krishna L, Jayabalan M. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material. J Mater Sci Mater Med 2009; 20:Suppl 1 S115 - 22; http://dx.doi.org/10.1007/s10856-008-3493-3; PMID: 18584124
  • Barrows TH. Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater 1986; 1:233 - 57; http://dx.doi.org/10.1016/S0267-6605(86)80015-4
  • Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, et al. Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 2004; 94:1124 - 32; http://dx.doi.org/10.1161/01.RES.0000126411.29641.08; PMID: 15044320
  • Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF--fibrin matrices for endothelialization. J Control Release 2001; 72:101 - 13; http://dx.doi.org/10.1016/S0168-3659(01)00266-8; PMID: 11389989
  • Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A 2009; 91:447 - 53; http://dx.doi.org/10.1002/jbm.a.32216; PMID: 18985761
  • Steffens GC, Yao C, Pre´vel P, Markowicz M, Schenck P, Noah EM, et al. Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 2004; 10:1502 - 9; PMID: 15588409
  • Kanematsu A, Yamamoto S, Ozeki M, Noguchi T, Kanatani I, Ogawa O, et al. Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 2004; 25:4513 - 20; http://dx.doi.org/10.1016/j.biomaterials.2003.11.035; PMID: 15046942
  • Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20:45 - 53; http://dx.doi.org/10.1016/S0142-9612(98)00107-0; PMID: 9916770
  • Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 2002; 60:217 - 23; http://dx.doi.org/10.1002/jbm.1287; PMID: 11857427
  • Li Z, Guan J. Hydrogels for Cardiac Tissue Engineering. Polymers 2011; 3:740 - 61; http://dx.doi.org/10.3390/polym3020740
  • Di Felice V, De Luca A, Serradifalco C, Di Marco P, Verin L, Motta A, et al. Adult stem cells, scaffolds for in vivo and in vitro myocardial tissue engineering. Ital J Anat Embryol 2010; 115:65 - 9; PMID: 21072992
  • Dalsin JL, Hu BH, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 2003; 125:4253 - 8; http://dx.doi.org/10.1021/ja0284963; PMID: 12670247
  • Lu Q, Ganesan K, Simionescu DT, Vyavahare NR. Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 2004; 25:5227 - 37; http://dx.doi.org/10.1016/j.biomaterials.2003.12.019; PMID: 15110474
  • Jayabalan M, Thomas V, Sreelatha PK. Studies on poly(propylene fumarate-co-ethylene glycol) based bone cement. Biomed Mater Eng 2000; 10:57 - 71; PMID: 11086840
  • Timmer MD, Ambrose CG, Mikos AG. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials 2003; 24:571 - 7; http://dx.doi.org/10.1016/S0142-9612(02)00368-X; PMID: 12437951
  • Jayabalan M. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices. Int J Biomater 2009; 2009:486710.
  • Dean D, Topham NS, Meneghetti SC, Wolfe MS, Jepsen K, He S, et al. Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction. Tissue Eng 2003; 9:495 - 504; http://dx.doi.org/10.1089/107632703322066679; PMID: 12857417
  • Krishna L, Jayabalan M. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material. J Mater Sci Mater Med 2009; 20:Suppl 1 S115 - 22; http://dx.doi.org/10.1007/s10856-008-3493-3; PMID: 18584124
  • Krishna L, Jayabalan M. Studies on injectable and biodegradable poly(ethylene glycol) end capped poly(propylene fumarate) – alginate hydrogel as tissue engineering scaffold material. J Mater Sci Mater Med 2009; 20:Suppl 1 S115 - 22; http://dx.doi.org/10.1007/s10856-008-3493-3; PMID: 18584124
  • Kallukalam BC, Jayabalan M, Sankar V. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial. Biomed Mater 2009; 4:015002; http://dx.doi.org/10.1088/1748-6041/4/1/015002; PMID: 18981542
  • Kallukalam BC, Jayabalan M, Sankar V. Injectable polyethylene glycol terminated poly(propylene fumarate)/acrylamide biodegradable materials for cardiac applications. Hacettepe Journal of Biology and Chemistry 2008; 36:283 - 90
  • Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 1993; 14:323 - 30; http://dx.doi.org/10.1016/0142-9612(93)90049-8; PMID: 8507774
  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996; 17:1417 - 22; http://dx.doi.org/10.1016/0142-9612(96)87284-X; PMID: 8830969
  • Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 1999; 20:1783 - 90; http://dx.doi.org/10.1016/S0142-9612(99)00073-3; PMID: 10509188
  • Leor J, Cohen S. Myocardial tissue engineering: creating a muscle patch for a wounded heart. Ann N Y Acad Sci 2004; 1015:312 - 9; http://dx.doi.org/10.1196/annals.1302.026; PMID: 15201170
  • Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg 2000; 119:368 - 75; http://dx.doi.org/10.1016/S0022-5223(00)70193-0; PMID: 10649213
  • Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol 1999; 277:H433 - 44; PMID: 10444466
  • Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, et al. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 1997; 11:683 - 94; PMID: 9240969
  • Fink C, Ergün S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 2000; 14:669 - 79; PMID: 10744624
  • Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000; 68:106 - 14; http://dx.doi.org/10.1002/(SICI)1097-0290(20000405)68:1<106::AID-BIT13>3.0.CO;2-3; PMID: 10699878
  • Kofidis T, Akhyari P, Wachsmann B, Boublik J, Mueller-Stahl K, Leyh R, et al. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg 2002; 22:238 - 43; http://dx.doi.org/10.1016/S1010-7940(02)00256-7; PMID: 12142192
  • Zhao YS, Wang CY, Guo XM, Zhang XZ, Wang XL, Qiao Y, et al. [Experimental study of tissue-engineered heart tissue using type I collagen as scaffold]. Zhonghua Yi Xue Za Zhi 2004; 84:766 - 70; PMID: 15200919
  • Gonen-Wadmany M, Gepstein L, Seliktar D. Controlling the cellular organization of tissue-engineered cardiac constructs. Ann N Y Acad Sci 2004; 1015:299 - 311; http://dx.doi.org/10.1196/annals.1302.025; PMID: 15201169
  • Naito H, Takewa Y, Mizuno T, Ohya S, Nakayama Y, Tatsumi E, et al. Three-dimensional cardiac tissue engineering using a thermoresponsive artificial extracellular matrix. ASAIO J 2004; 50:344 - 8; PMID: 15307545
  • Sakai T, Li RK, Weisel RD, Mickle DA, Kim ET, Jia ZQ, et al. The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J Thorac Cardiovasc Surg 2001; 121:932 - 42; http://dx.doi.org/10.1067/mtc.2001.113600; PMID: 11326237
  • McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 2003; 66:586 - 95; http://dx.doi.org/10.1002/jbm.a.10504; PMID: 12918042
  • Hanjaya-Putra D, Bose V, Shen YI, Yee J, Khetan S, Fox-Talbot K, et al. Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood 2011; 118:804 - 15; http://dx.doi.org/10.1182/blood-2010-12-327338; PMID: 21527523
  • Nerem RM. Cell-based therapies: from basic biology to replacement, repair, and regeneration. Biomaterials 2007; 28:5074 - 7; http://dx.doi.org/10.1016/j.biomaterials.2007.07.032; PMID: 17689607
  • Photos PJ, Bačáková L, Discher B, Bates FS, Discher DE. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003; 90:323 - 34; http://dx.doi.org/10.1016/S0168-3659(03)00201-3; PMID: 12880699
  • Bernacca GM, Straub I, Wheatley DJ. Mechanical and morphological study of biostable polyurethane heart valve leaflets explanted from sheep. J Biomed Mater Res 2002; 61:138 - 45; http://dx.doi.org/10.1002/jbm.10149; PMID: 12001256
  • Tassiopoulos AK, Greisler HP. Angiogenic mechanisms of endothelialization of cardiovascular implants: a review of recent investigative strategies. J Biomater Sci Polym Ed 2000; 11:1275 - 84; http://dx.doi.org/10.1163/156856200744200; PMID: 11263813
  • Nöth U, Tuli R, Osyczka AM, Danielson KG, Tuan RS. In vitro engineered cartilage constructs produced by press-coating biodegradable polymer with human mesenchymal stem cells. Tissue Eng 2002; 8:131 - 44; http://dx.doi.org/10.1089/107632702753503126; PMID: 11886661
  • Wang DA, Ji J, Sun YH, Shen JC, Feng LX, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules 2002; 3:1286 - 95; http://dx.doi.org/10.1021/bm0255950; PMID: 12425667
  • Fromstein JD, Zandstra PW, Alperin C, Rockwood D, Rabolt JF, Woodhouse KA. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A 2008; 14:369 - 78; http://dx.doi.org/10.1089/tea.2006.0410; PMID: 18333789
  • Zimmermann WH, Melnychenko I, Eschenhagen T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004; 25:1639 - 47; http://dx.doi.org/10.1016/S0142-9612(03)00521-0; PMID: 14697865
  • Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail Rev 2003; 8:259 - 69; http://dx.doi.org/10.1023/A:1024725818835; PMID: 12878835
  • Zimmermann WH, Eschenhagen T. Tissue engineering of aortic heart valves. Cardiovasc Res 2003; 60:460 - 2; http://dx.doi.org/10.1016/j.cardiores.2003.10.007; PMID: 14659789
  • Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 2002; 80:305 - 12; http://dx.doi.org/10.1002/bit.10372; PMID: 12226863
  • Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol 2004; 64:181 - 205; http://dx.doi.org/10.1016/S0070-2153(04)64008-7; PMID: 15563948
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47 - 55; http://dx.doi.org/10.1038/nbt1055; PMID: 15637621
  • Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006; 126:677 - 89; http://dx.doi.org/10.1016/j.cell.2006.06.044; PMID: 16923388
  • Gwak SJ, Bhang SH, Kim IK, Kim SS, Cho SW, Jeon O, et al. The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 2008; 29:844 - 56; http://dx.doi.org/10.1016/j.biomaterials.2007.10.050; PMID: 18022225
  • Hsiong SX, Carampin P, Kong HJ, Lee KY, Mooney DJ. Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A 2008; 85:145 - 56; http://dx.doi.org/10.1002/jbm.a.31521; PMID: 17688260
  • Hill E, Boontheekul T, Mooney DJ. Regulating activation of transplanted cells controls tissue regeneration. Proc Natl Acad Sci U S A 2006; 103:2494 - 9; http://dx.doi.org/10.1073/pnas.0506004103; PMID: 16477029
  • Suuronen EJ, Cao X, Melhuish A, Zhang P, Mckee D, Li F, et al. Cell-based angiogenic therapy without cell transplantation: enhanced engraftment of endogenous circulating progenitor cells using an acellular matrix-bound ligand. FASEB J 2009; 23:1447 - 58; http://dx.doi.org/10.1096/fj.08-111054; PMID: 19136616
  • Shi J, Dong N, Sun Z. [Impact of immobilized RGD peptides on cell attachment of decellularized valve scaffolds]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2008; 25:388 - 92; PMID: 18610628
  • Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci U S A 1987; 84:6471 - 5; http://dx.doi.org/10.1073/pnas.84.18.6471; PMID: 2442758
  • Holland J, Hersh L, Bryhan M, Onyiriuka E, Ziegler L. Culture of human vascular endothelial cells on an RGD-containing synthetic peptide attached to a starch-coated polystyrene surface: comparison with fibronectin-coated tissue grade polystyrene. Biomaterials 1996; 17:2147 - 56; http://dx.doi.org/10.1016/0142-9612(96)00028-2; PMID: 8922600
  • Hubbell JA, Massia SP, Desai NP, Drumheller PD. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnology (N Y) 1991; 9:568 - 72; http://dx.doi.org/10.1038/nbt0691-568; PMID: 1369319
  • Massia SP, Hubbell JA. Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J Biol Chem 1992; 267:14019 - 26; PMID: 1629200
  • Cao L, Mooney DJ. Spatiotemporal control over growth factor signaling for therapeutic neovascularization. Adv Drug Deliv Rev 2007; 59:1340 - 50; http://dx.doi.org/10.1016/j.addr.2007.08.012; PMID: 17868951
  • Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 2003; 20:1103 - 12; http://dx.doi.org/10.1023/A:1025034925152; PMID: 12948005
  • Ulijn RV, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, et al. Bioresponsive hydrogels. Mater Today 2007; 10:40 - 8; http://dx.doi.org/10.1016/S1369-7021(07)70049-4
  • Patel ZS, Mikos AG. Angiogenesis with biomaterial-based drug- and cell-delivery systems. J Biomater Sci Polym Ed 2004; 15:701 - 26; http://dx.doi.org/10.1163/156856204774196117; PMID: 15255521
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation 2004; 109:2487 - 91; http://dx.doi.org/10.1161/01.CIR.0000128595.79378.FA; PMID: 15173038
  • Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 2004; 109:2692 - 7; http://dx.doi.org/10.1161/01.CIR.0000128596.49339.05; PMID: 15184293
  • Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 2007; 359:108-14. J Cell Physiol 1952; 40:367 - 81; PMID: 13011169
  • Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159 - 78; http://dx.doi.org/10.1016/j.cytogfr.2005.01.004; PMID: 15863032
  • Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004; 279:4007 - 16; http://dx.doi.org/10.1074/jbc.M307569200; PMID: 14610089
  • Giaccia A, Siim BG, Johnson RS. HIF-1 as a target for drug development. Nat Rev Drug Discov 2003; 2:803 - 11; http://dx.doi.org/10.1038/nrd1199; PMID: 14526383
  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161:1163 - 77; http://dx.doi.org/10.1083/jcb.200302047; PMID: 12810700
  • Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006; 124:175 - 89; http://dx.doi.org/10.1016/j.cell.2005.10.036; PMID: 16413490
  • Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007; 177:489 - 500; http://dx.doi.org/10.1083/jcb.200608093; PMID: 17470632
  • Park HJ, Yoo JJ, Kershen RT, Moreland R, Atala A. Reconstitution of human corporal smooth muscle and endothelial cells in vivo. J Urol 1999; 162:1106 - 9; http://dx.doi.org/10.1016/S0022-5347(01)68084-4; PMID: 10458441
  • Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FWH, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004; 287:H480 - 7; http://dx.doi.org/10.1152/ajpheart.01232.2003; PMID: 15277191