645
Views
12
CrossRef citations to date
0
Altmetric
Report

Implanted neonatal human dermal fibroblasts influence the recruitment of endothelial cells in mice

, , , , , , & show all
Pages 43-52 | Received 22 Dec 2011, Accepted 19 Mar 2012, Published online: 01 Jan 2012

References

  • Folkman J. Angiogenesis: an organizing principle for drug discovery?. Nat Rev Drug Discov 2007; 6:273 - 86; http://dx.doi.org/10.1038/nrd2115; PMID: 17396134
  • Jain RK, Au P, Tam J, Duda DG, Fukumura D. Engineering vascularized tissue. Nat Biotechnol 2005; 23:821 - 3; http://dx.doi.org/10.1038/nbt0705-821; PMID: 16003365
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249 - 57; http://dx.doi.org/10.1038/35025220; PMID: 11001068
  • Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol 2000; 18:10 - 8; http://dx.doi.org/10.1007/PL00007070; PMID: 10766038
  • Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 2006; 21:735 - 44; http://dx.doi.org/10.1359/jbmr.060120; PMID: 16734388
  • Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Ame´de´e J, Granja PL. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res 2011; 7:186 - 97; http://dx.doi.org/10.1016/j.scr.2011.05.006; PMID: 21907162
  • Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, et al. Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 2007; 28:3965 - 76; http://dx.doi.org/10.1016/j.biomaterials.2007.05.032; PMID: 17582491
  • Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001; 7:679 - 89; http://dx.doi.org/10.1089/107632701753337645; PMID: 11749726
  • Fonseca KB, Bidarra SJ, Oliveira MJ, Granja PL, Barrias CC. Molecularly designed alginate hydrogels susceptible to local proteolysis as three-dimensional cellular microenvironments. Acta Biomater 2011; 7:1674 - 82; http://dx.doi.org/10.1016/j.actbio.2010.12.029; PMID: 21193068
  • Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials 2011; 32:7897 - 904; http://dx.doi.org/10.1016/j.biomaterials.2011.07.013; PMID: 21784515
  • Vacharathit V, Silva EA, Mooney DJ. Viability and functionality of cells delivered from peptide conjugated scaffolds. Biomaterials 2011; 32:3721 - 8; http://dx.doi.org/10.1016/j.biomaterials.2010.12.048; PMID: 21334064
  • Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47 - 55; http://dx.doi.org/10.1038/nbt1055; PMID: 15637621
  • Lutolf MP, Gilbert PM, Blau HM. Designing materials to direct stem-cell fate. Nature 2009; 462:433 - 41; http://dx.doi.org/10.1038/nature08602; PMID: 19940913
  • Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109:4761 - 8; http://dx.doi.org/10.1182/blood-2006-12-062471; PMID: 17327403
  • Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N. Angiogenesis assays: a critical overview. Clin Chem 2003; 49:32 - 40; http://dx.doi.org/10.1373/49.1.32; PMID: 12507958
  • van der Bilt JD, Borel Rinkes IH. Surgery and angiogenesis. Biochim Biophys Acta 2004; 1654:95 - 104; PMID: 14984770
  • Edmonds M, European and Australian Apligraf Diabetic Foot Ulcer Study Group. Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 2009; 8:11 - 8; http://dx.doi.org/10.1177/1534734609331597; PMID: 19189997
  • Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK. Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 2001; 104:2063 - 8; http://dx.doi.org/10.1161/hc4201.097192; PMID: 11673347
  • Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng 2005; 11:1678 - 87; http://dx.doi.org/10.1089/ten.2005.11.1678; PMID: 16411813
  • Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab 1999; 1:265 - 79; http://dx.doi.org/10.1046/j.1463-1326.1999.00032.x; PMID: 11225638
  • Kern A, Liu K, Mansbridge J. Modification of fibroblast gamma-interferon responses by extracellular matrix. J Invest Dermatol 2001; 117:112 - 8; http://dx.doi.org/10.1046/j.0022-202x.2001.01386.x; PMID: 11442757
  • Choong CS, Hutmacher DW, Triffitt JT. Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering. Tissue Eng 2006; 12:2521 - 31; http://dx.doi.org/10.1089/ten.2006.12.2521; PMID: 16995785
  • Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A 1998; 95:1062 - 6; http://dx.doi.org/10.1073/pnas.95.3.1062; PMID: 9448285
  • Passaniti A. Extracellular matrix-cell interactions: Matrigel and complex cellular pattern formation. Laboratory investigation; a journal of technical methods and pathology 1992; 67:804
  • Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 2008; 103:194 - 202; http://dx.doi.org/10.1161/CIRCRESAHA.108.178590; PMID: 18556575
  • Anghelina M, Krishnan P, Moldovan L, Moldovan NI. Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 2006; 168:529 - 41; http://dx.doi.org/10.2353/ajpath.2006.050255; PMID: 16436667
  • Negrão R, Costa R, Duarte D, Taveira Gomes T, Mendanha M, Moura L, et al. Angiogenesis and inflammation signaling are targets of beer polyphenols on vascular cells. J Cell Biochem 2010; 111:1270 - 9; http://dx.doi.org/10.1002/jcb.22850; PMID: 20803553
  • Kunz-Schughart LA, Schroeder JA, Wondrak M, van Rey F, Lehle K, Hofstaedter F, et al. Potential of fibroblasts to regulate the formation of three-dimensional vessel-like structures from endothelial cells in vitro. Am J Physiol Cell Physiol 2006; 290:C1385 - 98; http://dx.doi.org/10.1152/ajpcell.00248.2005; PMID: 16601149
  • Underwood PA, Bean PA, Gamble JR. Rate of endothelial expansion is controlled by cell:cell adhesion. Int J Biochem Cell Biol 2002; 34:55 - 69; http://dx.doi.org/10.1016/S1357-2725(01)00100-5; PMID: 11733185
  • Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159 - 78; http://dx.doi.org/10.1016/j.cytogfr.2005.01.004; PMID: 15863032
  • Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence?. Angiogenesis 2007; 10:149 - 66; http://dx.doi.org/10.1007/s10456-007-9074-0; PMID: 17457680
  • Almeida CR, Vasconcelos DP, Goncalves RM, Barbosa MA. Enhanced mesenchymal stromal cell recruitment via natural killer cells by incorporation of inflammatory signals in biomaterials. J R Soc Interface 2012; 9:261 - 71; PMID: 21752807
  • Karnovsky ML, Lazdins JK. Biochemical criteria for activated macrophages. J Immunol 1978; 121:809 - 13; PMID: 357654
  • Berrazueta JR, Lo´pez-Jaramillo P, Moncada S. [Nitric oxide: from endogenous vasodilator to biologic mediator]. Rev Esp Cardiol 1990; 43:421 - 31; PMID: 2093954
  • Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 2009; 15:180 - 9; http://dx.doi.org/10.1016/j.molmed.2009.02.001; PMID: 19303359
  • Mercier F, Kitasako JT, Hatton GI. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 2002; 451:170 - 88; http://dx.doi.org/10.1002/cne.10342; PMID: 12209835
  • Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 2005; 304:81 - 90; http://dx.doi.org/10.1016/j.yexcr.2004.11.011; PMID: 15707576
  • Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M. Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia 1999; 1:321 - 9; http://dx.doi.org/10.1038/sj.neo.7900043; PMID: 10935487
  • Martin TA, Harding KG, Jiang WG. Regulation of angiogenesis and endothelial cell motility by matrix-bound fibroblasts. Angiogenesis 1999; 3:69 - 76; http://dx.doi.org/10.1023/A:1009004212357; PMID: 14517446
  • Yin S, Cen L, Wang C, Zhao G, Sun J, Liu W, et al. Chondrogenic transdifferentiation of human dermal fibroblasts stimulated with cartilage-derived morphogenetic protein 1. Tissue Eng Part A 2010; 16:1633 - 43; http://dx.doi.org/10.1089/ten.tea.2009.0570; PMID: 19995150
  • Reddi AH, Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A 1972; 69:1601 - 5; http://dx.doi.org/10.1073/pnas.69.6.1601; PMID: 4504376
  • Kellar RS, Williams SK, Naughton GK, Figliozzi GM, Siani-Rose M. Three-dimensional fibroblast cultures stimulate improved ventricular performance in chronically ischemic canine hearts. Tissue Eng Part A 2011; 17:2177 - 86; http://dx.doi.org/10.1089/ten.tea.2010.0680; PMID: 21529261
  • Sorrell JM, Caplan AI. Fibroblast heterogeneity: more than skin deep. J Cell Sci 2004; 117:667 - 75; http://dx.doi.org/10.1242/jcs.01005; PMID: 14754903
  • Hoffmann J, Schirner M, Menrad A, Schneider MR. A highly sensitive model for quantification of in vivo tumor angiogenesis induced by alginate-encapsulated tumor cells. Cancer Res 1997; 57:3847 - 51; PMID: 9288798
  • Salgado CL, Sanchez EM, Zavaglia CA, Almeida AB, Granja PL. Injectable biodegradable polycaprolactone-sebacic acid gels for bone tissue engineering. Tissue Eng Part A 2012; 18:137 - 46; http://dx.doi.org/10.1089/ten.tea.2011.0294; PMID: 21902607
  • Munarin F, Guerreiro SG, Grellier MA, Tanzi MC, Barbosa MA, Petrini P, et al. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 2011; 12:568 - 77; http://dx.doi.org/10.1021/bm101110x; PMID: 21302960
  • Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, et al. Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 2010; 27:264 - 71; http://dx.doi.org/10.1007/s11095-009-0014-0; PMID: 19953308
  • Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324:1673 - 7; http://dx.doi.org/10.1126/science.1171643; PMID: 19556500
  • Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Granja PL. Immobilization of human mesenchymal stem cells within RGD-grafted alginate microspheres and assessment of their angiogenic potential. Biomacromolecules 2010; 11:1956 - 64; http://dx.doi.org/10.1021/bm100264a; PMID: 20690708