1,091
Views
26
CrossRef citations to date
0
Altmetric
Special Focus Review

Embroidered and surface coated polycaprolactone-co-lactide scaffolds

A potential graft for bone tissue engineering

, , , , &
Pages 158-165 | Published online: 01 Jul 2012

References

  • Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials 2007; 28:4240 - 50; http://dx.doi.org/10.1016/j.biomaterials.2007.06.023; PMID: 17644173
  • Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 2008; 39:9 - 20; http://dx.doi.org/10.1016/S0020-1383(08)70011-1; PMID: 18164300
  • Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs?. Injury 2011; 42:Suppl 2 S56 - 63; http://dx.doi.org/10.1016/j.injury.2011.06.011; PMID: 21752369
  • Blokhuis TJ, Lindner T. Allograft and bone morphogenetic proteins: an overview. Injury 2008; 39:Suppl 2 S33 - 6; http://dx.doi.org/10.1016/S0020-1383(08)70013-5; PMID: 18804571
  • Kruyt M, De Bruijn J, Rouwkema J, Van Bliterswijk C, Oner C, Verbout A, et al. Analysis of the dynamics of bone formation, effect of cell seeding density, and potential of allogeneic cells in cell-based bone tissue engineering in goats. Tissue Eng Part A 2008; 14:1081 - 8; http://dx.doi.org/10.1089/ten.tea.2007.0111; PMID: 18558815
  • Betz OB, Betz VM, Abdulazim A, Penzkofer R, Schmitt B, Schröder C, et al. The repair of critical-sized bone defects using expedited, autologous BMP-2 gene-activated fat implants. Tissue Eng Part A 2010; 16:1093 - 101; http://dx.doi.org/10.1089/ten.tea.2009.0656; PMID: 20035609
  • Chung HJ, Park TG. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 2007; 59:249 - 62; http://dx.doi.org/10.1016/j.addr.2007.03.015; PMID: 17482310
  • Gloria A, De Santis R, Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech 2010; 8:57 - 67; PMID: 20740467
  • Kim YH, Jyoti MA, Youn MH, Youn HS, Seo HS, Lee BT, et al. In vitro and in vivo evaluation of a macro porous beta-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process. Biomed Mater 2010; 5:035007; http://dx.doi.org/10.1088/1748-6041/5/3/035007; PMID: 20460686
  • Rentsch C, Rentsch B, Breier A, Spekl K, Jung R, Manthey S, et al. Long-bone critical-size defects treated with tissue-engineered polycaprolactone-co-lactide scaffolds: a pilot study on rats. J Biomed Mater Res A 2010; 95:964 - 72; http://dx.doi.org/10.1002/jbm.a.32878; PMID: 20824650
  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005; 26:4817 - 27; http://dx.doi.org/10.1016/j.biomaterials.2004.11.057; PMID: 15763261
  • Vergroesen PP, Kroeze RJ, Helder MN, Smit TH. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci 2011; 11:722 - 30; http://dx.doi.org/10.1002/mabi.201000433; PMID: 21400658
  • Bramfeldt H, Sarazin P, Vermette P. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-ε-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-ε-caprolactone). J Biomed Mater Res A 2007; 83:503 - 11; http://dx.doi.org/10.1002/jbm.a.31300; PMID: 17503493
  • Tomihata K, Suzuki M, Oka T. Ikada Y. A new resorbable monofilament suture. Polym Degrad Stabil 1998; 51:13 - 8; http://dx.doi.org/10.1016/S0141-3910(97)00183-3
  • Tomihata K, Suzuki M, Tomita N. Handling characteristics of poly(L-lactide-co-epsilon-caprolactone) monofilament suture. Biomed Mater Eng 2005; 15:381 - 91; PMID: 16179759
  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am 2008; 90:Suppl 1 36 - 42; http://dx.doi.org/10.2106/JBJS.G.01260; PMID: 18292355
  • Tanner KE. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H 2010; 224:1359 - 72; http://dx.doi.org/10.1243/09544119JEIM823; PMID: 21287825
  • Rentsch B, Hofmann A, Breier A, Rentsch C, Scharnweber D. Embroidered and surface modified polycaprolactone-co-lactide scaffolds as bone substitute: in vitro characterization. Ann Biomed Eng 2009; 37:2118 - 28; http://dx.doi.org/10.1007/s10439-009-9731-0; PMID: 19626441
  • Hess R, Douglas T, Myers KA, Rentsch B, Rentsch C, Worch H, et al. Hydrostatic pressure stimulation of human mesenchymal stem cells seeded on collagen-based artificial extracellular matrices. J Biomech Eng 2010; 132:021001; http://dx.doi.org/10.1115/1.4000194; PMID: 20370238
  • Rentsch C, Hess R, Rentsch B, Hofmann A, Manthey S, Scharnweber D, et al. Ovine bone marrow mesenchymal stem cells: isolation and characterization of the cells and their osteogenic differentiation potential on embroidered and surface-modified polycaprolactone-co-lactide scaffolds. In Vitro Cell Dev Biol Anim 2010; 46:624 - 34; http://dx.doi.org/10.1007/s11626-010-9316-0; PMID: 20490706
  • Wollenweber M, Domaschke H, Hanke T, Boxberger S, Schmack G, Gliesche K, et al. Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 2006; 12:345 - 59; http://dx.doi.org/10.1089/ten.2006.12.345; PMID: 16548693
  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci 2004; 4:743 - 65; http://dx.doi.org/10.1002/mabi.200400026; PMID: 15468269
  • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26:5474 - 91; http://dx.doi.org/10.1016/j.biomaterials.2005.02.002; PMID: 15860204
  • Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 2007; 1:245 - 60; http://dx.doi.org/10.1002/term.24; PMID: 18038415
  • Kay S, Thapa A, Haberstroh KM, Webster TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 2002; 8:753 - 61; http://dx.doi.org/10.1089/10763270260424114; PMID: 12459054
  • Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007; 28:3074 - 82; http://dx.doi.org/10.1016/j.biomaterials.2007.03.013; PMID: 17428532
  • Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 2011; 29:739 - 67; http://dx.doi.org/10.1016/j.biotechadv.2011.06.004; PMID: 21821113
  • Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials 2005; 26:3075 - 82; http://dx.doi.org/10.1016/j.biomaterials.2004.08.005; PMID: 15603802
  • Atthoff B, Hilborn J. Protein adsorption onto polyester surfaces: is there a need for surface activation?. J Biomed Mater Res B Appl Biomater 2007; 80:121 - 30; http://dx.doi.org/10.1002/jbm.b.30576; PMID: 16680692
  • Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering--the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007; 11:654 - 69; http://dx.doi.org/10.1111/j.1582-4934.2007.00078.x; PMID: 17760831
  • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 2008; 17:Suppl 4 467 - 79; http://dx.doi.org/10.1007/s00586-008-0745-3; PMID: 19005702
  • Hubbell JA. Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 2003; 14:551 - 8; http://dx.doi.org/10.1016/j.copbio.2003.09.004; PMID: 14580588
  • Rammelt S, Schulze E, Witt M, Petsch E, Biewener A, Pompe W, et al. Collagen type I increases bone remodelling around hydroxyapatite implants in the rat tibia. Cells Tissues Organs 2004; 178:146 - 57; http://dx.doi.org/10.1159/000082245; PMID: 15655332
  • Schneiders W, Reinstorf A, Biewener A, Serra A, Grass R, Kinscher M, et al. In vivo effects of modification of hydroxyapatite/collagen composites with and without chondroitin sulphate on bone remodeling in the sheep tibia. J Orthop Res 2009; 27:15 - 21; http://dx.doi.org/10.1002/jor.20719; PMID: 18634066
  • Stadlinger B, Bierbaum S, Grimmer S, Schulz MC, Kuhlisch E, Scharnweber D, et al. Increased bone formation around coated implants. J Clin Periodontol 2009; 36:698 - 704; http://dx.doi.org/10.1111/j.1600-051X.2009.01435.x; PMID: 19531092
  • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011; 32:9622 - 9; http://dx.doi.org/10.1016/j.biomaterials.2011.09.009; PMID: 21944829
  • Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 2006; 27:5561 - 71; http://dx.doi.org/10.1016/j.biomaterials.2006.06.034; PMID: 16879866
  • Manton KJ, Leong DF, Cool SM, Nurcombe V. Disruption of heparan and chondroitin sulfate signaling enhances mesenchymal stem cell-derived osteogenic differentiation via bone morphogenetic protein signaling pathways. Stem Cells 2007; 25:2845 - 54; http://dx.doi.org/10.1634/stemcells.2007-0065; PMID: 17702986
  • Volpi N. Quality of different chondroitin sulfate preparations in relation to their therapeutic activity. J Pharm Pharmacol 2009; 61:1271 - 80; http://dx.doi.org/10.1211/jpp.61.10.0002; PMID: 19814858
  • Vandrovcová M, Douglas T, Hauk D, Grössner-Schreiber B, Wiltfang J, Bač´ková L, et al. Influence of collagen and chondroitin sulfate (CS) coatings on poly-(lactide-co-glycolide) (PLGA) on MG 63 osteoblast-like cells. Physiol Res 2011; 60:797 - 813; PMID: 21812519
  • Muschler GF, Raut VP, Patterson TE, Wenke JC, Hollinger JO. The design and use of animal models for translational research in bone tissue engineering and regenerative medicine. Tissue Eng Part B Rev 2010; 16:123 - 45; http://dx.doi.org/10.1089/ten.teb.2009.0658; PMID: 19891542
  • O’Loughlin PF, Morr S, Bogunovic L, Kim AD, Park B, Lane JM. Selection and development of preclinical models in fracture-healing research. J Bone Joint Surg Am 2008; 90:Suppl 1 79 - 84; http://dx.doi.org/10.2106/JBJS.G.01585; PMID: 18292361
  • Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 2011; 49:591 - 9; http://dx.doi.org/10.1016/j.bone.2011.07.007; PMID: 21782988
  • Mittra E, Rubin C, Qin YX. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. J Biomech 2005; 38:1229 - 37; http://dx.doi.org/10.1016/j.jbiomech.2004.06.007; PMID: 15863107