1,345
Views
39
CrossRef citations to date
0
Altmetric
Report

Multifunctional aliphatic polyester nanofibers for tissue engineering

, , , &
Pages 202-212 | Published online: 01 Oct 2012

References

  • Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2:366 - 77; http://dx.doi.org/10.1098/rsfs.2011.0123
  • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24:4337 - 51; http://dx.doi.org/10.1016/S0142-9612(03)00340-5; PMID: 12922147
  • Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4:518 - 24; http://dx.doi.org/10.1038/nmat1421; PMID: 16003400
  • Chen GP, Ushida T, Tateishi T. Scaffold design for tissue engineering. Macromol Biosci 2002; 2:67 - 77; http://dx.doi.org/10.1002/1616-5195(20020201)2:2<67::AID-MABI67>3.0.CO;2-F
  • Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science 2002; 295:1009 - 14; http://dx.doi.org/10.1126/science.1069210; PMID: 11834815
  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60:613 - 21; http://dx.doi.org/10.1002/jbm.10167; PMID: 11948520
  • Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24:2077 - 82; http://dx.doi.org/10.1016/S0142-9612(02)00635-X; PMID: 12628828
  • Ma ZW, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 2005; 11:101 - 9; http://dx.doi.org/10.1089/ten.2005.11.101; PMID: 15738665
  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 2007; 59:1413 - 33; http://dx.doi.org/10.1016/j.addr.2007.04.022; PMID: 17916396
  • Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 2008; 29:1989 - 2006; http://dx.doi.org/10.1016/j.biomaterials.2008.01.011; PMID: 18281090
  • Jiao Y-P, Cui F-Z. Surface modification of polyester biomaterials for tissue engineering. Biomed Mater 2007; 2:R24 - 37; http://dx.doi.org/10.1088/1748-6041/2/4/R02; PMID: 18458475
  • Lim SH, Mao HQ. Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 2009; 61:1084 - 96; http://dx.doi.org/10.1016/j.addr.2009.07.011; PMID: 19647024
  • Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 2007; 59:1392 - 412; http://dx.doi.org/10.1016/j.addr.2007.04.021; PMID: 17884240
  • Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 2006; 12:1197 - 211; http://dx.doi.org/10.1089/ten.2006.12.1197; PMID: 16771634
  • Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 2005; 26:5158 - 66; http://dx.doi.org/10.1016/j.biomaterials.2005.01.002; PMID: 15792543
  • Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 2005; 26:599 - 609; http://dx.doi.org/10.1016/j.biomaterials.2004.03.005; PMID: 15282138
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Polym Sci 2010; 35:1217 - 56; http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
  • Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 2008; 19:455102; http://dx.doi.org/10.1088/0957-4484/19/45/455102; PMID: 21832761
  • Ma ZW, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng 2005; 11:1149 - 58; http://dx.doi.org/10.1089/ten.2005.11.1149; PMID: 16144451
  • Martins AE, Pinho ED, Faria S, Pashkuleva I, Marques AP, Reis RL, et al. Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance. Small 2009; 5:1195 - 206; PMID: 19242938
  • Araujo JV, Martins A, Leonor IB. Pinho Ed, Reis RL, Neves NM. Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. J Biomat Sci-Polym Ed 2008; 19:1261-78.
  • Prosecká E, Buzgo M, Rampichová M, Kocourek T, Kochová P, Vysloužilová L, et al. Thin-layer hydroxyapatite deposition on a nanofiber surface stimulates mesenchymal stem cell proliferation and their differentiation into osteoblasts. J Biomed Biotechnol 2012; 2012:428503; http://dx.doi.org/10.1155/2012/428503; PMID: 22319242
  • Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 2005; 6:2583 - 9; http://dx.doi.org/10.1021/bm050314k; PMID: 16153095
  • Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, et al. Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 2008; 29:2907 - 14; http://dx.doi.org/10.1016/j.biomaterials.2008.03.034; PMID: 18403012
  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008; 29:4532 - 9; http://dx.doi.org/10.1016/j.biomaterials.2008.08.007; PMID: 18757094
  • Jo JH, Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, et al. In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly(epsilon-caprolactone) composite materials. J Biomed Mater Res B Appl Biomater 2009; 91:213 - 20; http://dx.doi.org/10.1002/jbm.b.31392; PMID: 19422050
  • Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 2007; 3:321 - 30; http://dx.doi.org/10.1016/j.actbio.2007.01.002; PMID: 17321811
  • Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009; 90:906 - 19; http://dx.doi.org/10.1002/jbm.a.32052; PMID: 18646204
  • Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces 2007; 60:137 - 57; http://dx.doi.org/10.1016/j.colsurfb.2007.06.019; PMID: 17683921
  • Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 2009; 38:1139 - 51; http://dx.doi.org/10.1039/b811392k; PMID: 19421585
  • Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW. Design, fabrication and characterization of PCL electrospun scaffolds-a review. J Mater Chem 2011; 21:9419 - 53; http://dx.doi.org/10.1039/c0jm04502k
  • Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE. Functional aliphatic polyesters for biomedical and pharmaceutical applications. 2011; 152:168 - 76
  • Kawaguchi Y, Nishiyama T, Okada M, Kamachi M, Harada A. Complex formation of poly(epsilon-caprolactone) with cyclodextrins. Macromolecules 2002; 33:4472 - 7; http://dx.doi.org/10.1021/ma992103b
  • Shin KM, Dong T, He Y, Taguchi Y, Oishi A, Nishida H, et al. Inclusion complex formation between alpha-cyclodextrin and biodegradable aliphatic polyesters. Macromol Biosci 2004; 4:1075 - 83; http://dx.doi.org/10.1002/mabi.200400118; PMID: 15586392
  • van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2009; 10:3157 - 75; http://dx.doi.org/10.1021/bm901065f; PMID: 19921854
  • Khan AR, Forgo P, Stine KJ, D’Souza VT. Methods for selective modifications of cyclodextrins. Chem Rev 1998; 98:1977 - 96; http://dx.doi.org/10.1021/cr970012b; PMID: 11848955
  • Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev 2008; 60:1000 - 17; http://dx.doi.org/10.1016/j.addr.2008.02.011; PMID: 18413280
  • Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev 2009; 38:875 - 82; http://dx.doi.org/10.1039/b705458k; PMID: 19421567
  • Haiqing D, Yongyong L, Lan L, Donglu S. Cyclodextrins/polymer based (pseudo) polyrotaxanes for biomedical applications. Prog Chem 2011; 23:914 - 22
  • Yui N, Katoono R, Yamshita A. Functional cyclodextrin polyrotaxanes for drug delivery. Inclusion Polymers 2009; 222:55 - 77; http://dx.doi.org/10.1007/12_2008_8
  • Singh A, Zhan J, Zhaoyang Y, Elisseeff JH. Modular multifunctional poly(ethylene glycol) hydrogels for stem cell differentiation. Adv Func Mat 2012; 10.1002/adfm.201201902.
  • Nelles G, Weisser M, Back R, Wohlfart P, Wenz G, Neher SM. Controlled orientation of cyclodextrin derivatives immobilized on gold surfaces. J Am Chem Soc 1996; 118:5039 - 46; http://dx.doi.org/10.1021/ja9539812
  • Wenz G. Cyclodextrins as building-blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl 1994; 33:803 - 22; http://dx.doi.org/10.1002/anie.199408031
  • Mori T, Dong T, Yazawa K, Inoue Y. Preparation of highly transparent and thermally stable films of alpha-cyclodextrin/polymer inclusion complexes. Macromol Rapid Commun 2007; 28:2095 - 9; http://dx.doi.org/10.1002/marc.200700502
  • Shuai XT, Wei M, Porbeni FE, Bullions TA, Tonelli AE. Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers. Biomacromolecules 2002; 3:201 - 7; http://dx.doi.org/10.1021/bm015609m; PMID: 11866574
  • Huang L, Allen E, Tonelli AE. Study of the inclusion compounds formed between alpha-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(epsilon-caprolactone). Polymer (Guildf) 1998; 39:4857 - 65; http://dx.doi.org/10.1016/S0032-3861(97)00568-5
  • Harada AS, Suzuki S, Okada M, Kamachi M. Preparation and characterization of inclusion complexes of polyisobutylene with cyclodextrins. Macromolecules 1996; 29:5611 - 4; http://dx.doi.org/10.1021/ma960428b
  • Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 2010; 31:5875 - 85; http://dx.doi.org/10.1016/j.biomaterials.2010.04.010; PMID: 20452016
  • Deans TL, Singh A, Gibson M, Elisseeff JH. Regulating synthetic gene networks in 3D materials. Proc Natl Acad Sci U S A 2012; 109:15217 - 22; http://dx.doi.org/10.1073/pnas.1204705109; PMID: 22927376
  • Lin Y, Wang T, Wu L, Jing W, Chen X, Li Z, et al. Ectopic and in situ bone formation of adipose tissue-derived stromal cells in biphasic calcium phosphate nanocomposite. J Biomed Mater Res A 2007; 81:900 - 10; http://dx.doi.org/10.1002/jbm.a.31149; PMID: 17236222
  • Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, et al. A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials 2008; 29:4792 - 9; http://dx.doi.org/10.1016/j.biomaterials.2008.08.039; PMID: 18823660
  • Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 2001; 7:729 - 41; http://dx.doi.org/10.1089/107632701753337681; PMID: 11749730
  • Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007; 100:1249 - 60; http://dx.doi.org/10.1161/01.RES.0000265074.83288.09; PMID: 17495232
  • Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25:818 - 27; http://dx.doi.org/10.1634/stemcells.2006-0589; PMID: 17420225
  • Liao J, Guo X, Nelson D, Kasper FK, Mikos AG. Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor. Acta Biomater 2010; 6:2386 - 93; http://dx.doi.org/10.1016/j.actbio.2010.01.011; PMID: 20080214
  • McCullen SD, Zhu Y, Bernacki SH, Narayan RJ, Pourdeyhimi B, Gorga RE, et al. Electrospun composite poly(L-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed Mater 2009; 4:035002; http://dx.doi.org/10.1088/1748-6041/4/3/035002; PMID: 19390143
  • Takagishi Y, Kawakami T, Hara Y, Shinkai M, Takezawa T, Nagamune T. Bone-like tissue formation by three-dimensional culture of MG63 osteosarcoma cells in gelatin hydrogels using calcium-enriched medium. Tissue Eng 2006; 12:927 - 37; http://dx.doi.org/10.1089/ten.2006.12.927; PMID: 16674304
  • Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 2009; 61:1065 - 83; http://dx.doi.org/10.1016/j.addr.2009.07.008; PMID: 19646493
  • Luong-Van E, Grøndahl L, Chua KN, Leong KW, Nurcombe V, Cool SM. Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers. Biomaterials 2006; 27:2042 - 50; http://dx.doi.org/10.1016/j.biomaterials.2005.10.028; PMID: 16305806
  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006; 24:376 - 85; http://dx.doi.org/10.1634/stemcells.2005-0234; PMID: 16322640
  • Strehin IA, Elisseeff JH. Characterizing ECM production by cells encapsulated in hydrogels. Methods Mol Biol 2009; 522:349 - 62; http://dx.doi.org/10.1007/978-1-59745-413-1_23; PMID: 19247606
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45; http://dx.doi.org/10.1093/nar/29.9.e45; PMID: 11328886