1,454
Views
25
CrossRef citations to date
0
Altmetric
Special Focus Review

Highly porous drug-eluting structures

From wound dressings to stents and scaffolds for tissue regeneration

, , &
Pages 239-270 | Published online: 01 Oct 2012

References

  • Yang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering. Tissue Eng 2005; 11:1876 - 86; http://dx.doi.org/10.1089/ten.2005.11.1876; PMID: 16411834
  • Buttafoco L, Engbers-Buijtenhuijs P, Poot AA, Dijkstra PJ, Daamen WF, van Kuppevelt TH, et al. First steps towards tissue engineering of small-diameter blood vessels: preparation of flat scaffolds of collagen and elastin by means of freeze drying. J Biomed Mater Res B Appl Biomater 2006; 77:357 - 68; http://dx.doi.org/10.1002/jbm.b.30444; PMID: 16362956
  • Adekogbe I, Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 2005; 26:7241 - 50; http://dx.doi.org/10.1016/j.biomaterials.2005.05.043; PMID: 16011846
  • Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res A 2008; 84:1078 - 86; http://dx.doi.org/10.1002/jbm.a.31498; PMID: 17685398
  • Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 2008; 29:3625 - 35; http://dx.doi.org/10.1016/j.biomaterials.2008.05.032; PMID: 18556060
  • Lin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 2004; 37:623 - 36; http://dx.doi.org/10.1016/j.jbiomech.2003.09.029; PMID: 15046991
  • Woodfield TB, Van Blitterswijk CA, De Wijn J, Sims TJ, Hollander AP, Riesle J. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Eng 2005; 11:1297 - 311; http://dx.doi.org/10.1089/ten.2005.11.1297; PMID: 16259586
  • Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 2004; 25:4149 - 61; http://dx.doi.org/10.1016/j.biomaterials.2003.10.056; PMID: 15046905
  • Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater 2012; 28:703 - 21; http://dx.doi.org/10.1016/j.dental.2012.04.022; PMID: 22592164
  • Elsner JJ, Zilberman M. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomater 2009; 5:2872 - 83; http://dx.doi.org/10.1016/j.actbio.2009.04.007; PMID: 19416766
  • Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310:1135 - 8; http://dx.doi.org/10.1126/science.1106587; PMID: 16293749
  • Théry M. Micropatterning as a tool to decipher cell morphogenesis and functions. J Cell Sci 2010; 123:4201 - 13; http://dx.doi.org/10.1242/jcs.075150; PMID: 21123618
  • Reilly GC, Engler AJ. Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech 2010; 43:55 - 62; http://dx.doi.org/10.1016/j.jbiomech.2009.09.009; PMID: 19800626
  • Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 2004; 86-A:1541 - 58; PMID: 15252108
  • Ghosh K, Ingber DE. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv Drug Deliv Rev 2007; 59:1306 - 18; http://dx.doi.org/10.1016/j.addr.2007.08.014; PMID: 17920155
  • Yannas IV. Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clin Mater 1992; 9:179 - 87; http://dx.doi.org/10.1016/0267-6605(92)90098-E; PMID: 10149968
  • Jansen JA, von Recum AF. Textured and porous materials. In, Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, eds. UK: Biomaterials science: an introduction to materials and medicine. London UK: Elsevier Academic Press, 2004: 218-225.
  • Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26:5474 - 91; http://dx.doi.org/10.1016/j.biomaterials.2005.02.002; PMID: 15860204
  • Chevalier E, Chulia D, Pouget C, Viana M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J Pharm Sci 2008; 97:1135 - 54; http://dx.doi.org/10.1002/jps.21059; PMID: 17688274
  • de Groot JH, Nijenhuis AJ, Bruin P, Pennings AJ, Veth RPH, Klompmaker J. Use of porous biodegradable polymer implants in meniscus reconstruction. 1) Preparation of porous biodegradable polyurethanes for the reconstruction of meniscus lesions. Colloid Polym Sci 1990; 268:1073 - 81; http://dx.doi.org/10.1007/BF01410672
  • Reignier J, Huneault MA. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer (Guildf) 2006; 47:4703 - 17; http://dx.doi.org/10.1016/j.polymer.2006.04.029
  • Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 2006; 78:306 - 15; http://dx.doi.org/10.1002/jbm.a.30704; PMID: 16637043
  • Lee M, Wu BM, Dunn JC. Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A 2008; 87:1010 - 6; http://dx.doi.org/10.1002/jbm.a.31816; PMID: 18257081
  • Vaquette C, Frochot C, Rahouadj R, Wang X. An innovative method to obtain porous PLLA scaffolds with highly spherical and interconnected pores. J Biomed Mater Res B Appl Biomater 2008; 86:9 - 17; http://dx.doi.org/10.1002/jbm.b.30982; PMID: 18098188
  • Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer (Guildf) 1994; 35:1068 - 77; http://dx.doi.org/10.1016/0032-3861(94)90953-9
  • Uchida A, Nade SM, McCartney ER, Ching W. The use of ceramics for bone replacement. A comparative study of three different porous ceramics. J Bone Joint Surg Br 1984; 66:269 - 75; PMID: 6323483
  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 1996; l 17:1417 - 22; http://dx.doi.org/10.1016/0142-9612(96)87284-X; PMID: 8830969
  • Nam YS, Yoon JJ, Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res 2000; 53:1 - 7; http://dx.doi.org/10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R; PMID: 10634946
  • Lo H, Ponticiello MS, Leong KW. Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1995; 1:15 - 28; http://dx.doi.org/10.1089/ten.1995.1.15; PMID: 19877912
  • Whang K, Thomas CH, Healy KE. A novel method to fabricate bioabsorbable scaffolds. Polymer (Guildf) 1995; 36:837 - 42; http://dx.doi.org/10.1016/0032-3861(95)93115-3
  • Guan J, Stankus JJ, Wagner WR. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J Control Release 2007; 120:70 - 8; http://dx.doi.org/10.1016/j.jconrel.2007.04.002; PMID: 17509717
  • Pant HR, Neupane MP, Pant B, Panthi G, Oh HJ, Lee MH, et al. Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids Surf B Biointerfaces 2011; 88:587 - 92; http://dx.doi.org/10.1016/j.colsurfb.2011.07.045; PMID: 21856134
  • Elsner JJ, Zilberman M. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomater 2009; 5:2872 - 83; http://dx.doi.org/10.1016/j.actbio.2009.04.007; PMID: 19416766
  • Goldman M, McCollum CN, Hawker RJ, Drolc Z, Slaney G. Dacron arterial grafts: the influence of porosity, velour, and maturity on thrombogenicity. Surgery 1982; 92:947 - 52; PMID: 6216621
  • Valonen PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF, et al. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(epsilon-caprolactone) scaffolds. Biomaterials 2010; 31:2193 - 200; http://dx.doi.org/10.1016/j.biomaterials.2009.11.092; PMID: 20034665
  • Derwin KA, Codsi MJ, Milks RA, Baker AR, McCarron JA, Iannotti JP. Rotator cuff repair augmentation in a canine model with use of a woven poly-L-lactide device. J Bone Joint Surg Am 2009; 91:1159 - 71; http://dx.doi.org/10.2106/JBJS.H.00775; PMID: 19411465
  • Zilla P, Moodley L, Wolf MF, Bezuidenhout D, Sirry MS, Rafiee N, et al. Knitted nitinol represents a new generation of constrictive external vein graft meshes. J Vasc Surg 2011; 54:1439 - 50; http://dx.doi.org/10.1016/j.jvs.2011.05.023; PMID: 21802240
  • Van Lieshout M, Peters G, Rutten M, Baaijens FA. A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve. Tissue Eng 2006; 12:481 - 7; http://dx.doi.org/10.1089/ten.2006.12.481; PMID: 16579681
  • Tatekawa Y, Kawazoe N, Chen G, Shirasaki Y, Komuro H, Kaneko M. Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int 2010; 26:575 - 80; http://dx.doi.org/10.1007/s00383-010-2609-2; PMID: 20425118
  • Seo YK, Yoon HH, Song KY, Kwon SY, Lee HS, Park YS, et al. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. J Orthop Res 2009; 27:495 - 503; http://dx.doi.org/10.1002/jor.20752; PMID: 18924141
  • Alan Barber F, Boothby MH, Richards DP. New sutures and suture anchors in sports medicine. Sports Med Arthrosc 2006; 14:177 - 84; http://dx.doi.org/10.1097/00132585-200609000-00010; PMID: 17135965
  • Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A 2004; 68:286 - 95; http://dx.doi.org/10.1002/jbm.a.20050; PMID: 14704970
  • Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res 2006; 36:333 - 68; http://dx.doi.org/10.1146/annurev.matsci.36.011205.123537
  • Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, et al. Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 2005; 26:5330 - 8; http://dx.doi.org/10.1016/j.biomaterials.2005.01.052; PMID: 15814131
  • Yan J, Qiang L, Gao Y, Cui X, Zhou H, Zhong S, et al. Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 2011; In press PMID: 22140085
  • Oh IH, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater 2003; 49:1197 - 202; http://dx.doi.org/10.1016/j.scriptamat.2003.08.018
  • Nicula R, Lüthen F, Stir M, Nebe B, Burkel E. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Biomol Eng 2007; 24:564 - 7; http://dx.doi.org/10.1016/j.bioeng.2007.08.008; PMID: 17869173
  • Li JP, Li SH, Van Blitterswijk CA, de Groot K. A novel porous Ti6Al4V: characterization and cell attachment. J Biomed Mater Res A 2005; 73:223 - 33; http://dx.doi.org/10.1002/jbm.a.30278; PMID: 15761810
  • Yang D, Shao H, Guo Z, Lin T, Fan L. Preparation and properties of biomedical porous titanium alloys by gelcasting. Biomed Mater 2011; 6:045010; http://dx.doi.org/10.1088/1748-6041/6/4/045010; PMID: 21747152
  • Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 2001; 46:559 - 632; http://dx.doi.org/10.1016/S0079-6425(00)00002-5
  • Wang X, Li Y, Xiong J, Hodgson PD, Wen C. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomater 2009; 5:3616 - 24; http://dx.doi.org/10.1016/j.actbio.2009.06.002; PMID: 19505597
  • Moroni L, de Wijn JR, van Blitterswijk CA. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 2006; 27:974 - 85; http://dx.doi.org/10.1016/j.biomaterials.2005.07.023; PMID: 16055183
  • Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, et al. Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials 2006; 27:955 - 63; http://dx.doi.org/10.1016/j.biomaterials.2005.07.041; PMID: 16115681
  • Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, et al. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 2002; 23:4739 - 51; http://dx.doi.org/10.1016/S0142-9612(02)00223-5; PMID: 12361612
  • Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A. Processing and characterization of porous alumina scaffolds. J Mater Sci Mater Med 2002; 13:23 - 8; http://dx.doi.org/10.1023/A:1013622216071; PMID: 15348200
  • Boland T, Mironov V, Gutowska A, Roth EA, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol 2003; 272:497 - 502; http://dx.doi.org/10.1002/ar.a.10059; PMID: 12740943
  • Bibette J, Leal-Calderon F, Schmitt V, Poulin P. Emulsion science: basic principles: an overview. In, Fukuyama H, Kuhn M, Muller T, Ruckenstein A, Steiner F, Trumper J et al., eds. Germany: Springer tracts in modern physics. Berlin Germany: Springer, 2002:5-42.
  • Kitchener JA, Mussellwhite PA. The theory of stability of emulsions. In: Sherman P, ed. Emulsion science. 1. London: Academic Press, 1968.
  • Forgiarini A, Esquena J, Gonzalez C, Solans C.. Formation of Nano-emulsions by Low-Energy. Emulsification Methods at Constant Temperature Langmuir 2001; 17:2076 - 83
  • Whang K, Goldstick TK, Healy KE. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials 2000; 21:2545 - 51; http://dx.doi.org/10.1016/S0142-9612(00)00122-8; PMID: 11071604
  • Tcholakova S, Denkov ND, Ivanov IB, Campbell B. Coalescence stability of emulsions containing globular milk proteins. Adv Colloid Interface Sci 2006; 123-126:259 - 93; http://dx.doi.org/10.1016/j.cis.2006.05.021; PMID: 16854363
  • Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2005; 2:297 - 310; http://dx.doi.org/10.2174/156720105774370267; PMID: 16305433
  • Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001; 22:231 - 41; http://dx.doi.org/10.1016/S0142-9612(00)00178-2; PMID: 11197498
  • Liu Y, Deng X. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(DL-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J Control Release 2002; 83:147 - 55; http://dx.doi.org/10.1016/S0168-3659(02)00176-1; PMID: 12220846
  • Castellanos IJ, Flores G, Griebenow K. Effect of the molecular weight of poly(ethylene glycol) used as emulsifier on alpha-chymotrypsin stability upon encapsulation in PLGA microspheres. J Pharm Pharmacol 2005; 57:1261 - 9; http://dx.doi.org/10.1211/jpp.57.10.0004; PMID: 16259754
  • Delgado A, Soriano I, Sánchez E, Oliva M, Evora C. Radiolabelled biodegradable microspheres for lung imaging. Eur J Pharm Biopharm 2000; 50:227 - 36; http://dx.doi.org/10.1016/S0939-6411(00)00109-0; PMID: 10962232
  • Grinberg O, Binderman I, Bahar H, Zilberman M. Highly porous bioresorbable scaffolds with controlled release of bioactive agents for tissue-regeneration applications. Acta Biomater 2010; 6:1278 - 87; http://dx.doi.org/10.1016/j.actbio.2009.10.047; PMID: 19887123
  • Levy Y, Zilberman M. Novel bioresorbabale composite fiber structures loaded with proteins for tissue regeneration applications: microstructure and protein release. J Biomed Mater Res A 2006; 79:779 - 87; http://dx.doi.org/10.1002/jbm.a.30825; PMID: 16883584
  • Elsner JJ, Berdicevsky I, Zilberman M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics. Acta Biomater 2011; 7:325 - 36; http://dx.doi.org/10.1016/j.actbio.2010.07.013; PMID: 20643231
  • Elsner JJ, Shefy-Peleg A, Zilberman M. Novel biodegradable composite wound dressings with controlled release of antibiotics: microstructure, mechanical and physical properties. J Biomed Mater Res B Appl Biomater 2010; 93:425 - 35; http://dx.doi.org/10.1002/jbm.b.31599; PMID: 20127990
  • Kraitzer A, Ofek L, Schreiber R, Zilberman M. Long-term in vitro study of paclitaxel-eluting bioresorbable core/shell fiber structures. J Control Release 2008; 126:139 - 48; http://dx.doi.org/10.1016/j.jconrel.2007.11.011; PMID: 18201789
  • Kraitzer A, Kloog Y, Zilberman M. Novel farnesylthiosalicylate (FTS)-eluting composite structures. Eur J Pharm Sci 2009; 37:351 - 62; http://dx.doi.org/10.1016/j.ejps.2009.03.004; PMID: 19491026
  • Jones SA, Bowler PG, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber dressing. Wound Repair Regen 2004; 12:288 - 94; http://dx.doi.org/10.1111/j.1067-1927.2004.012304.x; PMID: 15225207
  • Field FK, Kerstein MD. Overview of wound healing in a moist environment. Am J Surg 1994; 167:1A 2S - 6S; http://dx.doi.org/10.1016/0002-9610(94)90002-7; PMID: 8109679
  • Lamke LO, Nilsson GE, Reithner HL. The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 1977; 3:159 - 65; http://dx.doi.org/10.1016/0305-4179(77)90004-3
  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97:2892 - 923; http://dx.doi.org/10.1002/jps.21210; PMID: 17963217
  • Sussman C, Bates-Jensen BM. Wound care: a collaborative practice manual for physical therapists and nurses. In, Sussman C, Bates-Jensen BM eds. Wound care: a collaborative practice manual for physical therapists and nurses (2nd Edn). Gaithersburg, MD; Aspen Publishers, 2001: 162-220.
  • Xu RX. Experimental and Clinical Study on Burns Regenerative Medicine and Therapy with MEBT/MEBO (Part 2). In, Xu RX, Sun X, Weeks BS Eds. Burns regenerative medicine and therapy. Basel, Switzerland, 2004:63-87.
  • Revathi G, Puri J, Jain BK. Bacteriology of burns. Burns 1998; 24:347 - 9; http://dx.doi.org/10.1016/S0305-4179(98)00009-6; PMID: 9688200
  • Harrison-Balestra C, Cazzaniga AL, Davis SC, Mertz PM. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol Surg 2003; 29:631 - 5; http://dx.doi.org/10.1046/j.1524-4725.2003.29146.x; PMID: 12786708
  • Pruitt BA Jr., Levine NS. Characteristics and uses of biologic dressings and skin substitutes. Arch Surg 1984; 119:312 - 22; http://dx.doi.org/10.1001/archsurg.1984.01390150050013; PMID: 6365034
  • Chung LY, Schmidt RJ, Hamlyn PF, Sagar BF, Andrews AM, Turner TD. Biocompatibility of potential wound management products: fungal mycelia as a source of chitin/chitosan and their effect on the proliferation of human F1000 fibroblasts in culture. J Biomed Mater Res 1994; 28:463 - 9; http://dx.doi.org/10.1002/jbm.820280409; PMID: 8006051
  • Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev 2003; 55:1679 - 98; http://dx.doi.org/10.1016/j.addr.2003.08.007; PMID: 14623407
  • Galdbart JO, Branger C, Andreassian B, Lambert-Zechovsky N, Kitzis M. Elution of six antibiotics bonded to polyethylene vascular grafts sealed with three proteins. J Surg Res 1996; 66:174 - 8; http://dx.doi.org/10.1006/jsre.1996.0391; PMID: 9024831
  • Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials 2006; 27:2450 - 67; http://dx.doi.org/10.1016/j.biomaterials.2005.11.031; PMID: 16337266
  • Gold HS, Moellering RC Jr.. Antimicrobial-drug resistance. N Engl J Med 1996; 335:1445 - 53; http://dx.doi.org/10.1056/NEJM199611073351907; PMID: 8875923
  • Gransden WR. Antibiotic resistance. Nosocomial gram-negative infection. J Med Microbiol 1997; 46:436 - 9; PMID: 9379467
  • Zilberman M. Novel composite fiber structures to provide drug/protein delivery for medical implants and tissue regeneration. Acta Biomater 2007; 3:51 - 7; http://dx.doi.org/10.1016/j.actbio.2006.06.008; PMID: 16956799
  • Zilberman M, Golerkansky E, Elsner JJ, Berdicevsky I. Gentamicin-eluting bioresorbable composite fibers for wound healing applications. J Biomed Mater Res A 2009; 89:654 - 66; http://dx.doi.org/10.1002/jbm.a.32013; PMID: 18442118
  • Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, et al. Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 2002; 59:438 - 49; http://dx.doi.org/10.1002/jbm.1260; PMID: 11774301
  • Sripriya R, Kumar MS, Sehgal PK. Improved collagen bilayer dressing for the controlled release of drugs. J Biomed Mater Res B Appl Biomater 2004; 70:389 - 96; http://dx.doi.org/10.1002/jbm.b.30051; PMID: 15264324
  • Kim HW, Knowles JC, Kim HE. Porous scaffolds of gelatin-hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res B Appl Biomater 2005; 74:686 - 98; http://dx.doi.org/10.1002/jbm.b.30236; PMID: 15988752
  • Queen D, Gaylor JD, Evans JH, Courtney JM, Reid WH. The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 1987; 8:367 - 71; http://dx.doi.org/10.1016/0142-9612(87)90007-X; PMID: 3676423
  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97:2892 - 923; http://dx.doi.org/10.1002/jps.21210; PMID: 17963217
  • Lamke LO. The influence of different “skin grafts” on the evaporative water loss from burns. Scand J Plast Reconstr Surg 1971; 5:82 - 6; http://dx.doi.org/10.3109/02844317109042943; PMID: 4944501
  • Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials 2006; 27:1452 - 61; http://dx.doi.org/10.1016/j.biomaterials.2005.08.004; PMID: 16143390
  • Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials 2005; 26:1961 - 8; http://dx.doi.org/10.1016/j.biomaterials.2004.06.032; PMID: 15576170
  • Gilbert P, Collier PJ, Brown MR. Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 1990; 34:1865 - 8; http://dx.doi.org/10.1128/AAC.34.10.1865; PMID: 2291653
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284:1318 - 22; http://dx.doi.org/10.1126/science.284.5418.1318; PMID: 10334980
  • Dover R, Otto WR, Nanchahal J, Riches DJ. Toxicity testing of wound dressing materials in vitro. Briti J plast surg 1995; 48(4):230-235.
  • Paddle-Ledinek JE, Nasa Z, Cleland HJ. Effect of different wound dressings on cell viability and proliferation. Plast Reconstr Surg 2006; 117:Suppl 110S - 8S, discussion 119S-20S; http://dx.doi.org/10.1097/01.prs.0000225439.39352.ce; PMID: 16799377
  • Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 2004; 18:703 - 10; http://dx.doi.org/10.1016/j.tiv.2004.03.012; PMID: 15251189
  • Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, et al. A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 2007; 15:94 - 104; http://dx.doi.org/10.1111/j.1524-475X.2006.00190.x; PMID: 17244325
  • Yannas IV, Burke JF, Orgill DP, Skrabut EM. Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 1982; 215:174 - 6; http://dx.doi.org/10.1126/science.7031899; PMID: 7031899
  • Bjornson AB, Bjornson HS, Lincoln NA, Altemeier WA. Relative roles of burn injury, wound colonization, and wound infection in induction of alterations of complement function in a guinea pig model of burn injury. J Trauma 1984; 24:106 - 15; http://dx.doi.org/10.1097/00005373-198402000-00003; PMID: 6420578
  • Kaufman T, Lusthaus SN, Sagher U, Wexler MR. Deep partial skin thickness burns: a reproducible animal model to study burn wound healing. Burns 1990; 16:13 - 6; http://dx.doi.org/10.1016/0305-4179(90)90199-7; PMID: 2322389
  • Orenstein A, Klein D, Kopolovic J, Winkler E, Malik Z, Keller N, et al. The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol 1997; 19:307 - 14; http://dx.doi.org/10.1016/S0928-8244(97)00097-7; PMID: 9537756
  • Boon RJ, Beale AS, Sutherland R. Efficacy of topical mupirocin against an experimental Staphylococcus aureus surgical wound infection. J Antimicrob Chemother 1985; 16:519 - 26; http://dx.doi.org/10.1093/jac/16.4.519; PMID: 3934130
  • Galandiuk S, Wrightson WR, Young S, Myers S, Polk HC Jr.. Absorbable, delayed-release antibiotic beads reduce surgical wound infection. Am Surg 1997; 63:831 - 5; PMID: 9290532
  • Kawai K, Suzuki S, Tabata Y, Taira T, Ikada Y, Nishimura Y. Development of an artificial dermis preparation capable of silver sulfadiazine release. J Biomed Mater Res 2001; 57:346 - 56; http://dx.doi.org/10.1002/1097-4636(20011205)57:3<346::AID-JBM1177>3.0.CO;2-8; PMID: 11523029
  • Mazurak VC, Burrell RE, Tredget EE, Clandinin MT, Field CJ. The effect of treating infected skin grafts with Acticoat on immune cells. Burns 2007; 33:52 - 8; http://dx.doi.org/10.1016/j.burns.2006.04.027; PMID: 17079089
  • Herndon DN, Wilmore DW, Mason AD Jr.. Development and analysis of a small animal model simulating the human postburn hypermetabolic response. J Surg Res 1978; 25:394 - 403; http://dx.doi.org/10.1016/S0022-4804(78)80003-1; PMID: 713539
  • Elsner JJ, Egozi D, Ullmann Y, Berdicevsky I, Shefy-Peleg A, Zilberman M. Novel biodegradable composite wound dressings with controlled release of antibiotics: results in a guinea pig burn model. Burns 2011; 37:896 - 904; http://dx.doi.org/10.1016/j.burns.2011.02.010; PMID: 21466923
  • Poon VKM, Burd A. In vitro cytotoxity of silver: implication for clinical wound care. Burns 2004; 30:140 - 7; http://dx.doi.org/10.1016/j.burns.2003.09.030; PMID: 15019121
  • Su SH, Chao RY, Landau CL, Nelson KD, Timmons RB, Meidell RS, et al. Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann Biomed Eng 2003; 31:667 - 77; http://dx.doi.org/10.1114/1.1575756; PMID: 12797616
  • Alikacem N, Yoshizawa T, Nelson KD, Wilson CA. Quantitative MR imaging study of intravitreal sustained release of VEGF in rabbits. Invest Ophthalmol Vis Sci 2000; 41:1561 - 9; PMID: 10798677
  • Dunn RL, Lewis DH. J.M. G. Monolithic fibers for controlled delivery of tetracycline. Proc Int Symp Control Rel Bioact Mater, 1982:157-63.
  • Dunn RL, English JP, Stoner WC, Potter AG, Perkins BH. Biodegradable fibers for the controlled release of tetracycline in treatment of peridontal disease. Proc Int Symp Control Rel Bioact Mater, 1987:289-94.
  • Dunn RL, Lewis DH, Beck LR. Fibrous polymer for the delivery of contraceptive steroids to the female reproductive track. In: Lewis DH, ed. Controlled release of pesticides and pharmaceuticals. New York: Plenum press, 1981:125-46.
  • Eenink MJD, Feijen J, Oligslanger J, Albers JHM, Rieke JC. P.J. G. Biodegradable hollow fibers for the controlled release of hormones. J Control Release 1987; 6:225 - 37; http://dx.doi.org/10.1016/0168-3659(87)90079-4
  • Lazzeri L, Cascone MG, Quiriconi L, Morabito L, Giusti P. Biodegradable hollow microfibers to produce bioactive scaffolds. Polym Int 2005; 54:101 - 7; http://dx.doi.org/10.1002/pi.1648
  • Polacco G, Cascone MG, Lazzeri L, Ferrara S, Giusti P. Biodegradable hollow fibers containing drug-loaded nanoparticles as controlled release systems. Polym Int 2002; 51:1464 - 72; http://dx.doi.org/10.1002/pi.1086
  • Heldman AW, Cheng L, Jenkins GM, Heller PF, Kim DW, Ware M Jr., et al. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 2001; 103:2289 - 95; http://dx.doi.org/10.1161/01.CIR.103.18.2289; PMID: 11342479
  • Dhanikula AB, Panchagnula R. Localized paclitaxel delivery. Int J Pharm 1999; 183:85 - 100; http://dx.doi.org/10.1016/S0378-5173(99)00087-3; PMID: 10361159
  • Kraitzer A. Paclitaxel-loaded composite fiber structures used in vascular stents. Material Science and Engineering. Tel Aviv: Tel Aviv University, 2006.
  • Feng S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J Control Release 2001; 71:53 - 69; http://dx.doi.org/10.1016/S0168-3659(00)00364-3; PMID: 11245908
  • Farb A, Heller PF, Shroff S, Cheng L, Kolodgie FD, Carter AJ, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 2001; 104:473 - 9; http://dx.doi.org/10.1161/hc3001.092037; PMID: 11468212
  • Marom M, Haklai R, Ben-Baruch G, Marciano D, Egozi Y, Kloog Y. Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. J Biol Chem 1995; 270:22263 - 70; http://dx.doi.org/10.1074/jbc.270.38.22263; PMID: 7673206
  • George J, Sack J, Barshack I, Keren P, Goldberg I, Haklai R, et al. Inhibition of intimal thickening in the rat carotid artery injury model by a nontoxic Ras inhibitor. Arterioscler Thromb Vasc Biol 2004; 24:363 - 8; http://dx.doi.org/10.1161/01.ATV.0000112021.98971.f0; PMID: 14670932
  • Kloog Y, Cox AD. Prenyl-binding domains: potential targets for Ras inhibitors and anti-cancer drugs. Semin Cancer Biol 2004; 14:253 - 61; http://dx.doi.org/10.1016/j.semcancer.2004.04.004; PMID: 15219618
  • Chitkara D, Shikanov A, Kumar N, Domb AJ. Biodegradable injectable in situ depot-forming drug delivery systems. Macromol Biosci 2006; 6:977 - 90; http://dx.doi.org/10.1002/mabi.200600129; PMID: 17128422
  • Shikanov A, Vaisman B, Krasko MY, Nyska A, Domb AJ. Poly(sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel: in vitro release and in vivo toxicity. J Biomed Mater Res A 2004; 69:47 - 54; http://dx.doi.org/10.1002/jbm.a.20101; PMID: 14999750
  • Kraitzer A, Kloog Y, Haklai R, Zilberman M. Composite fiber structures with antiproliferative agents exhibit advantageous drug delivery and cell growth inhibition in vitro. J Pharm Sci 2011; 100:133 - 49; http://dx.doi.org/10.1002/jps.22238; PMID: 20623695
  • Burke J. Hildebrand Solubility Parameter. In: Jensen C, ed. The AIC Book and Paper Group Annual, 3. The Oakland Museum of California, 1984: 13-58
  • Kraitzer A, Alperstein D, Kloog Y, Zilberman M. Mechanisms of antiproliferative drug release from bioresorbable porous structures. J Biomed Mater Res A 2012; Accepted http://dx.doi.org/10.1002/jbm.a.34436; PMID: 23065767
  • Haklai R, Weisz MG, Elad G, Paz A, Marciano D, Egozi Y, et al. Dislodgment and accelerated degradation of Ras. Biochemistry 1998; 37:1306 - 14; http://dx.doi.org/10.1021/bi972032d; PMID: 9477957
  • Zundelevich A, Elad-Sfadia G, Haklai R, Kloog Y. Suppression of lung cancer tumor growth in a nude mouse model by the Ras inhibitor salirasib (farnesylthiosalicylic acid). Mol Cancer Ther 2007; 6:1765 - 73; http://dx.doi.org/10.1158/1535-7163.MCT-06-0706; PMID: 17541036
  • Blum R, Jacob-Hirsch J, Amariglio N, Rechavi G, Kloog Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 2005; 65:999 - 1006; PMID: 15705901
  • Goldberg L, Kloog Y. A Ras inhibitor tilts the balance between Rac and Rho and blocks phosphatidylinositol 3-kinase-dependent glioblastoma cell migration. Cancer Res 2006; 66:11709 - 17; http://dx.doi.org/10.1158/0008-5472.CAN-06-1878; PMID: 17178866
  • Langer R, Vacanti JP. Tissue engineering. Science 1993; 260:920 - 6; http://dx.doi.org/10.1126/science.8493529; PMID: 8493529
  • Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J Anat 2008; 213:66 - 72; http://dx.doi.org/10.1111/j.1469-7580.2008.00878.x; PMID: 18422523
  • Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000; 17:497 - 504; http://dx.doi.org/10.1023/A:1007502828372; PMID: 10888299
  • Chen RR, Mooney DJ. Polymeric growth factor delivery strategies for tissue engineering. Pharm Res 2003; 20:1103 - 12; http://dx.doi.org/10.1023/A:1025034925152; PMID: 12948005
  • Basmanav FB, Kose GT, Hasirci V. Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 2008; 29:4195 - 204; http://dx.doi.org/10.1016/j.biomaterials.2008.07.017; PMID: 18691753
  • Zhu XH, Wang CH, Tong YW. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. J Biomed Mater Res A 2009; 89:411 - 23; http://dx.doi.org/10.1002/jbm.a.31978; PMID: 18431776
  • Elcin AE, Elcin YM. Localized angiogenesis induced by human vascular endothelial growth factor-activated PLGA sponge. Tissue Eng 2006; 12:959 - 68; http://dx.doi.org/10.1089/ten.2006.12.959; PMID: 16674307
  • Wei G, Jin Q, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 2006; 112:103 - 10; http://dx.doi.org/10.1016/j.jconrel.2006.01.011; PMID: 16516328
  • Piazza R. Protein science and association: an open challenge for colloid science. Curr Opin Colloid Interface Sci 2004; 8:515 - 22; http://dx.doi.org/10.1016/j.cocis.2004.01.008
  • Tadros TF, Vandamme A, Levecke B, Booten K, Stevens CV. Stabilization of emulsions using polymeric surfactants based on inulin. Adv Colloid Interface Sci 2004; 108-109:207 - 26; http://dx.doi.org/10.1016/j.cis.2003.10.024; PMID: 15072943