3,974
Views
155
CrossRef citations to date
0
Altmetric
Review

Role of E-cadherin and other cell adhesion molecules in survival and differentiation of human pluripotent stem cells

, &
Pages 59-73 | Published online: 01 Jan 2012

References

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145 - 7; http://dx.doi.org/10.1126/science.282.5391.1145; PMID: 9804556
  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861 - 72; http://dx.doi.org/10.1016/j.cell.2007.11.019; PMID: 18035408
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917 - 20; http://dx.doi.org/10.1126/science.1151526; PMID: 18029452
  • Lee G, Chambers SM, Tomishima MJ, Studer L. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 2010; 5:688 - 701; http://dx.doi.org/10.1038/nprot.2010.35; PMID: 20360764
  • Kim H, Lee G, Ganat Y, Papapetrou EP, Lipchina I, Socci ND, et al. miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 2011; 8:695 - 706; http://dx.doi.org/10.1016/j.stem.2011.04.002; PMID: 21624813
  • Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, et al. Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 2012; 125:87 - 99; http://dx.doi.org/10.1161/CIRCULATIONAHA.111.048264; PMID: 22095829
  • Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G, Park IH, et al. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 2010; 115:2769 - 76; http://dx.doi.org/10.1182/blood-2009-07-234690; PMID: 20065292
  • Szabo E, Rampalli S, Risueño RM, Schnerch A, Mitchell R, Fiebig-Comyn A, et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468:521 - 6; http://dx.doi.org/10.1038/nature09591; PMID: 21057492
  • Young RA. Control of the embryonic stem cell state. Cell 2011; 144:940 - 54; http://dx.doi.org/10.1016/j.cell.2011.01.032; PMID: 21414485
  • Xu C, Jiang J, Sottile V, McWhir J, Lebkowski J, Carpenter MK. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 2004; 22:972 - 80; http://dx.doi.org/10.1634/stemcells.22-6-972; PMID: 15536188
  • Moore RN, Cherry JF, Mathur V, Cohen R, Grumet M, Moghe PV. E-cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells. Stem Cells Dev 2012; 21:30 - 41; http://dx.doi.org/10.1089/scd.2010.0434; PMID: 21469943
  • Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 2001; 19:971 - 4; http://dx.doi.org/10.1038/nbt1001-971; PMID: 11581665
  • Ludwig TE, Bergendahl V, Levenstein ME, Yu J, Probasco MD, Thomson JA. Feeder-independent culture of human embryonic stem cells. Nat Methods 2006; 3:637 - 46; http://dx.doi.org/10.1038/nmeth902; PMID: 16862139
  • Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 2005; 102:4783 - 8; http://dx.doi.org/10.1073/pnas.0501283102; PMID: 15772165
  • Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24:185 - 7; http://dx.doi.org/10.1038/nbt1177; PMID: 16388305
  • Levenstein ME, Ludwig TE, Xu RH, Llanas RA, VanDenHeuvel-Kramer K, Manning D, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells 2006; 24:568 - 74; http://dx.doi.org/10.1634/stemcells.2005-0247; PMID: 16282444
  • Wang L, Li L, Menendez P, Cerdan C, Bhatia M. Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 2005; 105:4598 - 603; http://dx.doi.org/10.1182/blood-2004-10-4065; PMID: 15718421
  • Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007; 448:1015 - 21; http://dx.doi.org/10.1038/nature06027; PMID: 17625568
  • Wang S, Tian R, Li L, Figeys D, Wang L. An enhanced chemically defined SILAC medium for quantitative proteomics study of human embryonic stem cells. Proteomics 2011; 11:4040 - 6; http://dx.doi.org/10.1002/pmic.201100052; PMID: 21770031
  • Yao S, Chen S, Clark J, Hao E, Beattie GM, Hayek A, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc Natl Acad Sci U S A 2006; 103:6907 - 12; http://dx.doi.org/10.1073/pnas.0602280103; PMID: 16632596
  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 2007; 25:681 - 6; http://dx.doi.org/10.1038/nbt1310; PMID: 17529971
  • Xu Y, Zhu X, Hahm HS, Wei W, Hao E, Hayek A, et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 2010; 107:8129 - 34; http://dx.doi.org/10.1073/pnas.1002024107; PMID: 20406903
  • Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 2011; 108:8299 - 304; http://dx.doi.org/10.1073/pnas.1014041108; PMID: 21525408
  • Li J, Wang G, Wang C, Zhao Y, Zhang H, Tan Z, et al. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 2007; 75:299 - 307; http://dx.doi.org/10.1111/j.1432-0436.2006.00143.x; PMID: 17286604
  • Vijayaragavan K, Szabo E, Bosse´ M, Ramos-Mejia V, Moon RT, Bhatia M. Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell 2009; 4:248 - 62; http://dx.doi.org/10.1016/j.stem.2008.12.011; PMID: 19265664
  • Tian R, Wang S, Elisma F, Li L, Zhou H, Wang L, et al. Rare cell proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics study of human embryonic stem cell differentiation. Mol Cell Proteomics 2011; 10:M110.000679; http://dx.doi.org/10.1074/mcp.M110.000679; PMID: 20530636
  • Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, et al. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004; 22:707 - 16; http://dx.doi.org/10.1038/nbt971; PMID: 15146197
  • Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE, et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 2005; 201:1603 - 14; http://dx.doi.org/10.1084/jem.20041888; PMID: 15883170
  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137:647 - 58; http://dx.doi.org/10.1016/j.cell.2009.02.038; PMID: 19409607
  • Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691 - 731; http://dx.doi.org/10.1152/physrev.00004.2010; PMID: 21527735
  • Prokhorova TA, Rigbolt KT, Johansen PT, Henningsen J, Kratchmarova I, Kassem M, et al. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 2009; 8:959 - 70; http://dx.doi.org/10.1074/mcp.M800287-MCP200; PMID: 19151416
  • Li L, Wang S, Jezierski A, Moalim-Nour L, Mohib K, Parks RJ, et al. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 2010; 28:247 - 57; PMID: 20039365
  • Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, et al. Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 2010; 19:1231 - 40; http://dx.doi.org/10.1089/scd.2009.0328; PMID: 19811096
  • Chen T, Yuan D, Wei B, Jiang J, Kang J, Ling K, et al. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells 2010; 28:1315 - 25; http://dx.doi.org/10.1002/stem.456; PMID: 20521328
  • Son YS, Seong RH, Ryu CJ, Cho YS, Bae KH, Chung SJ, et al. Brief report: L1 cell adhesion molecule, a novel surface molecule of human embryonic stem cells, is essential for self-renewal and pluripotency. Stem Cells 2011; 29:2094 - 9; http://dx.doi.org/10.1002/stem.754; PMID: 21957033
  • Yoshida C, Takeichi M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 1982; 28:217 - 24; http://dx.doi.org/10.1016/0092-8674(82)90339-7; PMID: 7060128
  • Gallin WJ, Edelman GM, Cunningham BA. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A 1983; 80:1038 - 42; http://dx.doi.org/10.1073/pnas.80.4.1038; PMID: 6573655
  • Peyrie´ras N, Hyafil F, Louvard D, Ploegh HL, Jacob F. Uvomorulin: a nonintegral membrane protein of early mouse embryo. Proc Natl Acad Sci U S A 1983; 80:6274 - 7; http://dx.doi.org/10.1073/pnas.80.20.6274; PMID: 6604915
  • Vestweber D, Kemler R. Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res 1984; 152:169 - 78; http://dx.doi.org/10.1016/0014-4827(84)90241-6; PMID: 6370707
  • Oda H, Takeichi M. Evolution: structural and functional diversity of cadherin at the adherens junction. J Cell Biol 2011; 193:1137 - 46; http://dx.doi.org/10.1083/jcb.201008173; PMID: 21708975
  • Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA, et al. A novel role for p120 catenin in E-cadherin function. J Cell Biol 2002; 159:465 - 76; http://dx.doi.org/10.1083/jcb.200205115; PMID: 12427869
  • Davis MA, Ireton RC, Reynolds AB. A core function for p120-catenin in cadherin turnover. J Cell Biol 2003; 163:525 - 34; http://dx.doi.org/10.1083/jcb.200307111; PMID: 14610055
  • Xiao K, Allison DF, Buckley KM, Kottke MD, Vincent PA, Faundez V, et al. Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 2003; 163:535 - 45; http://dx.doi.org/10.1083/jcb.200306001; PMID: 14610056
  • Hirano S, Kimoto N, Shimoyama Y, Hirohashi S, Takeichi M. Identification of a neural alpha-catenin as a key regulator of cadherin function and multicellular organization. Cell 1992; 70:293 - 301; http://dx.doi.org/10.1016/0092-8674(92)90103-J; PMID: 1638632
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin-catenin-actin complex. Cell 2005; 123:889 - 901; http://dx.doi.org/10.1016/j.cell.2005.09.020; PMID: 16325582
  • Kobielak A, Pasolli HA, Fuchs E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 2004; 6:21 - 30; http://dx.doi.org/10.1038/ncb1075; PMID: 14647292
  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10:778 - 90; http://dx.doi.org/10.1038/nrm2786; PMID: 19851336
  • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10:468 - 77; PMID: 19536106
  • Campbell S, Swann HR, Seif MW, Kimber SJ, Aplin JD. Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum Reprod 1995; 10:1571 - 8; PMID: 7593541
  • D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23:1534 - 41; http://dx.doi.org/10.1038/nbt1163; PMID: 16258519
  • Eastham AM, Spencer H, Soncin F, Ritson S, Merry CL, Stern PL, et al. Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 2007; 67:11254 - 62; http://dx.doi.org/10.1158/0008-5472.CAN-07-2253; PMID: 18056451
  • Costa M, Dottori M, Ng E, Hawes SM, Sourris K, Jamshidi P, et al. The hESC line Envy expresses high levels of GFP in all differentiated progeny. Nat Methods 2005; 2:259 - 60; http://dx.doi.org/10.1038/nmeth748; PMID: 15782217
  • Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309:1369 - 73; http://dx.doi.org/10.1126/science.1116447; PMID: 16123299
  • Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 2007; 26:4744 - 55; http://dx.doi.org/10.1038/sj.emboj.7601896; PMID: 17948051
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663 - 76; http://dx.doi.org/10.1016/j.cell.2006.07.024; PMID: 16904174
  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451:141 - 6; http://dx.doi.org/10.1038/nature06534; PMID: 18157115
  • Larue L, Antos C, Butz S, Huber O, Delmas V, Dominis M, et al. A role for cadherins in tissue formation. Development 1996; 122:3185 - 94; PMID: 8898231
  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007; 448:191 - 5; http://dx.doi.org/10.1038/nature05950; PMID: 17597762
  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007; 448:196 - 9; http://dx.doi.org/10.1038/nature05972; PMID: 17597760
  • Rossant J. The impact of developmental biology on pluripotent stem cell research: successes and challenges. Dev Cell 2011; 21:20 - 3; http://dx.doi.org/10.1016/j.devcel.2011.06.010; PMID: 21763602
  • Nichols J, Smith A. The origin and identity of embryonic stem cells. Development 2011; 138:3 - 8; http://dx.doi.org/10.1242/dev.050831; PMID: 21138972
  • Chou YF, Chen HH, Eijpe M, Yabuuchi A, Chenoweth JG, Tesar P, et al. The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 2008; 135:449 - 61; http://dx.doi.org/10.1016/j.cell.2008.08.035; PMID: 18984157
  • Li L, Wang BH, Wang S, Moalim-Nour L, Mohib K, Lohnes D, et al. Individual cell movement, asymmetric colony expansion, rho-associated kinase, and E-cadherin impact the clonogenicity of human embryonic stem cells. Biophys J 2010; 98:2442 - 51; http://dx.doi.org/10.1016/j.bpj.2010.02.029; PMID: 20513387
  • Chen G, Hou Z, Gulbranson DR, Thomson JA. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 2010; 7:240 - 8; http://dx.doi.org/10.1016/j.stem.2010.06.017; PMID: 20682449
  • Ohgushi M, Matsumura M, Eiraku M, Murakami K, Aramaki T, Nishiyama A, et al. Molecular pathway and cell state responsible for dissociation-induced apoptosis in human pluripotent stem cells. Cell Stem Cell 2010; 7:225 - 39; http://dx.doi.org/10.1016/j.stem.2010.06.018; PMID: 20682448
  • Li D, Zhou J, Wang L, Shin ME, Su P, Lei X, et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J Cell Biol 2010; 191:631 - 44; http://dx.doi.org/10.1083/jcb.201006094; PMID: 20974810
  • Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 2006; 24:344 - 50; http://dx.doi.org/10.1038/nbt1189; PMID: 16444268
  • Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci 2010; 123:853 - 60; http://dx.doi.org/10.1242/jcs.061598; PMID: 20159965
  • Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R. Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 2010; 4:165 - 79; http://dx.doi.org/10.1016/j.scr.2010.03.001; PMID: 20363202
  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947 - 56; http://dx.doi.org/10.1016/j.cell.2005.08.020; PMID: 16153702
  • Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38:431 - 40; http://dx.doi.org/10.1038/ng1760; PMID: 16518401
  • Walker A, Su H, Conti MA, Harb N, Adelstein RS, Sato N. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nat Commun 2010; 1:71; http://dx.doi.org/10.1038/ncomms1074; PMID: 20842192
  • Harb N, Archer TK, Sato N. The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS One 2008; 3:e3001; http://dx.doi.org/10.1371/journal.pone.0003001; PMID: 18714354
  • Kasza KE, Zallen JA. Dynamics and regulation of contractile actin-myosin networks in morphogenesis. Curr Opin Cell Biol 2011; 23:30 - 8; http://dx.doi.org/10.1016/j.ceb.2010.10.014; PMID: 21130639
  • Pilot F, Philippe JM, Lemmers C, Lecuit T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature 2006; 442:580 - 4; http://dx.doi.org/10.1038/nature04935; PMID: 16862128
  • Cavey M, Rauzi M, Lenne PF, Lecuit T. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 2008; 453:751 - 6; http://dx.doi.org/10.1038/nature06953; PMID: 18480755
  • Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 1988; 107:1575 - 87; http://dx.doi.org/10.1083/jcb.107.4.1575; PMID: 3049625
  • Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 2002; 4:222 - 31; http://dx.doi.org/10.1038/ncb758; PMID: 11836526
  • de Beco S, Gueudry C, Amblard F, Coscoy S. Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc Natl Acad Sci U S A 2009; 106:7010 - 5; http://dx.doi.org/10.1073/pnas.0811253106; PMID: 19372377
  • Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C. Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 2005; 25:389 - 402; http://dx.doi.org/10.1128/MCB.25.1.389-402.2005; PMID: 15601859
  • Le TL, Yap AS, Stow JL. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 1999; 146:219 - 32; PMID: 10402472
  • Paterson AD, Parton RG, Ferguson C, Stow JL, Yap AS. Characterization of E-cadherin endocytosis in isolated MCF-7 and chinese hamster ovary cells: the initial fate of unbound E-cadherin. J Biol Chem 2003; 278:21050 - 7; http://dx.doi.org/10.1074/jbc.M300082200; PMID: 12657640
  • Ogata S, Morokuma J, Hayata T, Kolle G, Niehrs C, Ueno N, et al. TGF-beta signaling-mediated morphogenesis: modulation of cell adhesion via cadherin endocytosis. Genes Dev 2007; 21:1817 - 31; http://dx.doi.org/10.1101/gad.1541807; PMID: 17639085
  • Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 1988; 3:201 - 4; PMID: 3045729
  • Price LS, Hajdo-Milasinovic A, Zhao J, Zwartkruis FJ, Collard JG, Bos JL. Rap1 regulates E-cadherin-mediated cell-cell adhesion. J Biol Chem 2004; 279:35127 - 32; http://dx.doi.org/10.1074/jbc.M404917200; PMID: 15166221
  • Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, et al. Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol Cell Biol 2004; 24:6690 - 700; http://dx.doi.org/10.1128/MCB.24.15.6690-6700.2004; PMID: 15254236
  • Balzac F, Avolio M, Degani S, Kaverina I, Torti M, Silengo L, et al. E-cadherin endocytosis regulates the activity of Rap1: a traffic light GTPase at the crossroads between cadherin and integrin function. J Cell Sci 2005; 118:4765 - 83; http://dx.doi.org/10.1242/jcs.02584; PMID: 16219685
  • Thoreson MA, Anastasiadis PZ, Daniel JM, Ireton RC, Wheelock MJ, Johnson KR, et al. Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol 2000; 148:189 - 202; http://dx.doi.org/10.1083/jcb.148.1.189; PMID: 10629228
  • Bai H, Chen K, Gao YX, Arzigian M, Xie YL, Malcosky C, et al. Bcl-xL enhances single-cell survival and expansion of human embryonic stem cells without affecting self-renewal. Stem Cell Res 2012; 8:26 - 37; http://dx.doi.org/10.1016/j.scr.2011.08.002; PMID: 22099018
  • Ardehali R, Inlay MA, Ali SR, Tang C, Drukker M, Weissman IL. Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. Proc Natl Acad Sci U S A 2011; 108:3282 - 7; http://dx.doi.org/10.1073/pnas.1019047108; PMID: 21300885
  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26:1276 - 84; http://dx.doi.org/10.1038/nbt.1503; PMID: 18931654
  • Li R, Liang J, Ni S, Zhou T, Qing X, Li H, et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 2010; 7:51 - 63; http://dx.doi.org/10.1016/j.stem.2010.04.014; PMID: 20621050
  • Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 2010; 7:64 - 77; http://dx.doi.org/10.1016/j.stem.2010.04.015; PMID: 20621051
  • Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 2008; 454:49 - 55; http://dx.doi.org/10.1038/nature07056; PMID: 18509334
  • Redmer T, Diecke S, Grigoryan T, Quiroga-Negreira A, Birchmeier W, Besser D. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep 2011; 12:720 - 6; http://dx.doi.org/10.1038/embor.2011.88; PMID: 21617704
  • Kelly KF, Ng DY, Jayakumaran G, Wood GA, Koide H, Doble BW. β-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 2011; 8:214 - 27; http://dx.doi.org/10.1016/j.stem.2010.12.010; PMID: 21295277
  • Liao B, Bao X, Liu L, Feng S, Zovoilis A, Liu W, et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition. J Biol Chem 2011; 286:17359 - 64; http://dx.doi.org/10.1074/jbc.C111.235960; PMID: 21454525
  • Brasch J, Harrison OJ, Ahlsen G, Carnally SM, Henderson RM, Honig B, et al. Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 2011; 408:57 - 73; http://dx.doi.org/10.1016/j.jmb.2011.01.031; PMID: 21269602
  • Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells. PLoS One 2009; 4:e6468; http://dx.doi.org/10.1371/journal.pone.0006468; PMID: 19649295
  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 2011; 121:2326 - 35; http://dx.doi.org/10.1172/JCI45794; PMID: 21576821
  • Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 2008; 22:152 - 65; http://dx.doi.org/10.1101/gad.1616208; PMID: 18198334
  • LaVaute TM, Yoo YD, Pankratz MT, Weick JP, Gerstner JR, Zhang SC. Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 2009; 27:1741 - 9; http://dx.doi.org/10.1002/stem.99; PMID: 19544434
  • Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 2007; 25:1511 - 20; http://dx.doi.org/10.1634/stemcells.2006-0707; PMID: 17332508
  • Harris ES, Nelson WJ. VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 2010; 22:651 - 8; http://dx.doi.org/10.1016/j.ceb.2010.07.006; PMID: 20708398
  • Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004; 21:31 - 41; http://dx.doi.org/10.1016/j.immuni.2004.06.006; PMID: 15345218
  • Wang ZZ, Au P, Chen T, Shao Y, Daheron LM, Bai H, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007; 25:317 - 8; http://dx.doi.org/10.1038/nbt1287; PMID: 17322871
  • Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, et al. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 2010; 30:80 - 9; http://dx.doi.org/10.1161/ATVBAHA.109.194233; PMID: 19875721
  • James D, Nam HS, Seandel M, Nolan D, Janovitz T, Tomishima M, et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nat Biotechnol 2010; 28:161 - 6; http://dx.doi.org/10.1038/nbt.1605; PMID: 20081865
  • Aricescu AR, Jones EY. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr Opin Cell Biol 2007; 19:543 - 50; http://dx.doi.org/10.1016/j.ceb.2007.09.010; PMID: 17935964
  • Pruszak J, Sonntag KC, Aung MH, Sanchez-Pernaute R, Isacson O. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells 2007; 25:2257 - 68; http://dx.doi.org/10.1634/stemcells.2006-0744; PMID: 17588935
  • Sundberg M, Jansson L, Ketolainen J, Pihlajamäki H, Suuronen R, Skottman H, et al. CD marker expression profiles of human embryonic stem cells and their neural derivatives, determined using flow-cytometric analysis, reveal a novel CD marker for exclusion of pluripotent stem cells. Stem Cell Res 2009; 2:113 - 24; http://dx.doi.org/10.1016/j.scr.2008.08.001; PMID: 19383417
  • Evseenko D, Zhu Y, Schenke-Layland K, Kuo J, Latour B, Ge S, et al. Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 2010; 107:13742 - 7; http://dx.doi.org/10.1073/pnas.1002077107; PMID: 20643952
  • Oberlin E, Tavian M, Blazsek I, Pe´ault B. Blood-forming potential of vascular endothelium in the human embryo. Development 2002; 129:4147 - 57; PMID: 12163416
  • Kraehenbuehl TP, Langer R, Ferreira LS. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods 2011; 8:731 - 6; http://dx.doi.org/10.1038/nmeth.1671; PMID: 21878920
  • Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 2011; 209:139 - 51; http://dx.doi.org/10.1530/JOE-10-0377; PMID: 21307119
  • Alam N, Goel HL, Zarif MJ, Butterfield JE, Perkins HM, Sansoucy BG, et al. The integrin-growth factor receptor duet. J Cell Physiol 2007; 213:649 - 53; http://dx.doi.org/10.1002/jcp.21278; PMID: 17886260
  • Miura T, Luo Y, Khrebtukova I, Brandenberger R, Zhou D, Thies RS, et al. Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev 2004; 13:694 - 715; http://dx.doi.org/10.1089/scd.2004.13.694; PMID: 15684837
  • Assou S, Le Carrour T, Tondeur S, Ström S, Gabelle A, Marty S, et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007; 25:961 - 73; http://dx.doi.org/10.1634/stemcells.2006-0352; PMID: 17204602
  • Miyazaki T, Futaki S, Hasegawa K, Kawasaki M, Sanzen N, Hayashi M, et al. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells. Biochem Biophys Res Commun 2008; 375:27 - 32; http://dx.doi.org/10.1016/j.bbrc.2008.07.111; PMID: 18675790
  • Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, et al. Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med 2009; 13:8B 2622 - 33; http://dx.doi.org/10.1111/j.1582-4934.2008.00643.x; PMID: 19397785
  • Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9:768 - 78; http://dx.doi.org/10.1038/nmat2812; PMID: 20729850
  • Meng Y, Eshghi S, Li YJ, Schmidt R, Schaffer DV, Healy KE. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J 2010; 24:1056 - 65; http://dx.doi.org/10.1096/fj.08-126821; PMID: 19933311
  • Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 2008; 26:2257 - 65; http://dx.doi.org/10.1634/stemcells.2008-0291; PMID: 18599809
  • Prowse AB, Doran MR, Cooper-White JJ, Chong F, Munro TP, Fitzpatrick J, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media. Biomaterials 2010; 31:8281 - 8; http://dx.doi.org/10.1016/j.biomaterials.2010.07.037; PMID: 20674971
  • Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, et al. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006; 15:1894 - 913; http://dx.doi.org/10.1093/hmg/ddl112; PMID: 16644866
  • Häcker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005; 6:530 - 41; http://dx.doi.org/10.1038/nrm1681; PMID: 16072037
  • Bishop JR, Schuksz M, Esko JD. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446:1030 - 7; http://dx.doi.org/10.1038/nature05817; PMID: 17460664
  • Forsten-Williams K, Chua CC, Nugent MA. The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J Theor Biol 2005; 233:483 - 99; http://dx.doi.org/10.1016/j.jtbi.2004.10.020; PMID: 15748910
  • Paine-Saunders S, Viviano BL, Zupicich J, Skarnes WC, Saunders S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev Biol 2000; 225:179 - 87; http://dx.doi.org/10.1006/dbio.2000.9831; PMID: 10964473
  • Fujise M, Takeo S, Kamimura K, Matsuo T, Aigaki T, Izumi S, et al. Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 2003; 130:1515 - 22; http://dx.doi.org/10.1242/dev.00379; PMID: 12620978
  • Koziel L, Kunath M, Kelly OG, Vortkamp A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev Cell 2004; 6:801 - 13; http://dx.doi.org/10.1016/j.devcel.2004.05.009; PMID: 15177029
  • Cortes M, Baria AT, Schwartz NB. Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development 2009; 136:1697 - 706; http://dx.doi.org/10.1242/dev.030742; PMID: 19369399
  • Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 1997; 124:2623 - 32; PMID: 9217004
  • Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr.. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 2001; 293:1663 - 6; http://dx.doi.org/10.1126/science.293.5535.1663; PMID: 11533491
  • Shimokawa K, Kimura-Yoshida C, Nagai N, Mukai K, Matsubara K, Watanabe H, et al. Cell surface heparan sulfate chains regulate local reception of FGF signaling in the mouse embryo. Dev Cell 2011; 21:257 - 72; http://dx.doi.org/10.1016/j.devcel.2011.06.027; PMID: 21839920
  • Levenstein ME, Berggren WT, Lee JE, Conard KR, Llanas RA, Wagner RJ, et al. Secreted proteoglycans directly mediate human embryonic stem cell-basic fibroblast growth factor 2 interactions critical for proliferation. Stem Cells 2008; 26:3099 - 107; http://dx.doi.org/10.1634/stemcells.2007-1056; PMID: 18802039
  • Sasaki N, Okishio K, Ui-Tei K, Saigo K, Kinoshita-Toyoda A, Toyoda H, et al. Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J Biol Chem 2008; 283:3594 - 606; http://dx.doi.org/10.1074/jbc.M705621200; PMID: 18024963