1,486
Views
56
CrossRef citations to date
0
Altmetric
Review

The dual roles of homeobox genes in vascularization and wound healing

, &
Pages 457-470 | Received 04 Jul 2012, Accepted 11 Sep 2012, Published online: 17 Oct 2012

References

  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249 - 57; http://dx.doi.org/10.1038/35025220; PMID: 11001068
  • Radisic M, Deen W, Langer R, Vunjak-Novakovic G. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 2005; 288:H1278 - 89; http://dx.doi.org/10.1152/ajpheart.00787.2004; PMID: 15539422
  • Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 2000; 50:1 - 15; http://dx.doi.org/10.1023/A:1006493130855; PMID: 11245270
  • Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998; 2:549 - 58; http://dx.doi.org/10.1016/S1097-2765(00)80154-9; PMID: 9844628
  • Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85:221 - 8; http://dx.doi.org/10.1161/01.RES.85.3.221; PMID: 10436164
  • Ghajar CM, George SC, Putnam AJ. Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 2008; 18:251 - 78; http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v18.i3.30; PMID: 18540825
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1:27 - 31; http://dx.doi.org/10.1038/nm0195-27; PMID: 7584949
  • Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86:353 - 64; http://dx.doi.org/10.1016/S0092-8674(00)80108-7; PMID: 8756718
  • Folkman J, Hanahan D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 1991; 22:339 - 47; PMID: 1726933
  • Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol 2009; 9:259 - 70; http://dx.doi.org/10.1038/nri2528; PMID: 19282852
  • Zumsteg A, Christofori G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 2009; 21:60 - 70; http://dx.doi.org/10.1097/CCO.0b013e32831bed7e; PMID: 19125020
  • Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 2002; 7:177 - 89; http://dx.doi.org/10.1023/A:1020304003704; PMID: 12463738
  • Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 2006; 66:11238 - 46; http://dx.doi.org/10.1158/0008-5472.CAN-06-1278; PMID: 17114237
  • Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004; 114:623 - 33; PMID: 15343380
  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13:206 - 20; http://dx.doi.org/10.1016/j.ccr.2008.01.034; PMID: 18328425
  • Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 2009; 206:1089 - 102; http://dx.doi.org/10.1084/jem.20081605; PMID: 19398755
  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 2006; 95:272 - 81; http://dx.doi.org/10.1038/sj.bjc.6603240; PMID: 16832418
  • Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 1990; 87:6624 - 8; http://dx.doi.org/10.1073/pnas.87.17.6624; PMID: 1697685
  • Dameron KM, Volpert OV, Tainsky MA, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 1994; 265:1582 - 4; http://dx.doi.org/10.1126/science.7521539; PMID: 7521539
  • Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N. Sustained expression of homeobox D10 inhibits angiogenesis. Am J Pathol 2002; 161:2099 - 109; http://dx.doi.org/10.1016/S0002-9440(10)64488-4; PMID: 12466126
  • Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF. Heterogeneity of the tumor vasculature. Semin Thromb Hemost 2010; 36:321 - 31; http://dx.doi.org/10.1055/s-0030-1253454; PMID: 20490982
  • Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565 - 70; http://dx.doi.org/10.1038/276565a0; PMID: 103000
  • Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191 - 201; http://dx.doi.org/10.1016/0092-8674(94)90290-9; PMID: 7913880
  • Wellik DM. Hox genes and vertebrate axial pattern. Curr Top Dev Biol 2009; 88:257 - 78; http://dx.doi.org/10.1016/S0070-2153(09)88009-5; PMID: 19651308
  • Lufkin T, Mark M, Hart CP, Dollé P, LeMeur M, Chambon P. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 1992; 359:835 - 41; http://dx.doi.org/10.1038/359835a0; PMID: 1359423
  • Kessel M, Balling R, Gruss P. Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 1990; 61:301 - 8; http://dx.doi.org/10.1016/0092-8674(90)90810-2; PMID: 1970515
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al, International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409:860 - 921; http://dx.doi.org/10.1038/35057062; PMID: 11237011
  • McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68:283 - 302; http://dx.doi.org/10.1016/0092-8674(92)90471-N; PMID: 1346368
  • Condie BG, Capecchi MR. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 1994; 370:304 - 7; http://dx.doi.org/10.1038/370304a0; PMID: 7913519
  • Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995; 375:791 - 5; http://dx.doi.org/10.1038/375791a0; PMID: 7596412
  • Horan GS, Ramírez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 1995; 9:1667 - 77; http://dx.doi.org/10.1101/gad.9.13.1667; PMID: 7628700
  • Horan GS, Kovàcs EN, Behringer RR, Featherstone MS. Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function. Dev Biol 1995; 169:359 - 72; http://dx.doi.org/10.1006/dbio.1995.1150; PMID: 7750651
  • Fromental-Ramain C, Warot X, Lakkaraju S, Favier B, Haack H, Birling C, et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development 1996; 122:461 - 72; PMID: 8625797
  • Greer JM, Puetz J, Thomas KR, Capecchi MR. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 2000; 403:661 - 5; http://dx.doi.org/10.1038/35001077; PMID: 10688203
  • Davis AP, Capecchi MR. A mutational analysis of the 5′ HoxD genes: dissection of genetic interactions during limb development in the mouse. Development 1996; 122:1175 - 85; PMID: 8620844
  • de la Cruz CC, Der-Avakian A, Spyropoulos DD, Tieu DD, Carpenter EM. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development. Dev Biol 1999; 216:595 - 610; http://dx.doi.org/10.1006/dbio.1999.9528; PMID: 10642795
  • Rancourt DE, Tsuzuki T, Capecchi MR. Genetic interaction between hoxb-5 and hoxb-6 is revealed by nonallelic noncomplementation. Genes Dev 1995; 9:108 - 22; http://dx.doi.org/10.1101/gad.9.1.108; PMID: 7828847
  • Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 1996; 122:449 - 60; PMID: 8625796
  • Chisaka O, Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 1991; 350:473 - 9; http://dx.doi.org/10.1038/350473a0; PMID: 1673020
  • Bergwerff M, Gittenberger-de Groot AC, Wisse LJ, DeRuiter MC, Wessels A, Martin JF, et al. Loss of function of the Prx1 and Prx2 homeobox genes alters architecture of the great elastic arteries and ductus arteriosus. Virchows Arch 2000; 436:12 - 9; http://dx.doi.org/10.1007/PL00008193; PMID: 10664157
  • Miano JM, Firulli AB, Olson EN, Hara P, Giachelli CM, Schwartz SM. Restricted expression of homeobox genes distinguishes fetal from adult human smooth muscle cells. Proc Natl Acad Sci U S A 1996; 93:900 - 5; http://dx.doi.org/10.1073/pnas.93.2.900; PMID: 8570656
  • Wu Y, Moser M, Bautch VL, Patterson C. HoxB5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells. Mol Cell Biol 2003; 23:5680 - 91; http://dx.doi.org/10.1128/MCB.23.16.5680-5691.2003; PMID: 12897140
  • Bahrami SB, Veiseh M, Dunn AA, Boudreau NJ. Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells. Cell Adh Migr 2011; 5:133 - 41; http://dx.doi.org/10.4161/cam.5.2.14373; PMID: 21200152
  • Iacovino M, Chong D, Szatmari I, Hartweck L, Rux D, Caprioli A, et al. HoxA3 is an apical regulator of haemogenic endothelium. Nat Cell Biol 2011; 13:72 - 8; http://dx.doi.org/10.1038/ncb2137; PMID: 21170035
  • Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, et al. Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 2005; 201:1825 - 35; http://dx.doi.org/10.1084/jem.20042097; PMID: 15928198
  • Crompton MR, Bartlett TJ, MacGregor AD, Manfioletti G, Buratti E, Giancotti V, et al. Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res 1992; 20:5661 - 7; http://dx.doi.org/10.1093/nar/20.21.5661; PMID: 1360645
  • Hallaq H, Pinter E, Enciso J, McGrath J, Zeiss C, Brueckner M, et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 2004; 131:5197 - 209; http://dx.doi.org/10.1242/dev.01393; PMID: 15459110
  • Nakagawa T, Abe M, Yamazaki T, Miyashita H, Niwa H, Kokubun S, et al. HEX acts as a negative regulator of angiogenesis by modulating the expression of angiogenesis-related gene in endothelial cells in vitro. Arterioscler Thromb Vasc Biol 2003; 23:231 - 7; http://dx.doi.org/10.1161/01.ATV.0000052670.55321.87; PMID: 12588764
  • Minami T, Murakami T, Horiuchi K, Miura M, Noguchi T, Miyazaki J, et al. Interaction between hex and GATA transcription factors in vascular endothelial cells inhibits flk-1/KDR-mediated vascular endothelial growth factor signaling. J Biol Chem 2004; 279:20626 - 35; http://dx.doi.org/10.1074/jbc.M308730200; PMID: 15016828
  • Boudreau N, Andrews C, Srebrow A, Ravanpay A, Cheresh DA. Induction of the angiogenic phenotype by Hox D3. J Cell Biol 1997; 139:257 - 64; http://dx.doi.org/10.1083/jcb.139.1.257; PMID: 9314544
  • Boudreau NJ, Varner JA. The homeobox transcription factor Hox D3 promotes integrin alpha5beta1 expression and function during angiogenesis. J Biol Chem 2004; 279:4862 - 8; http://dx.doi.org/10.1074/jbc.M305190200; PMID: 14610084
  • Charboneau A, East L, Mulholland N, Rohde M, Boudreau N. Pbx1 is required for Hox D3-mediated angiogenesis. Angiogenesis 2005; 8:289 - 96; http://dx.doi.org/10.1007/s10456-005-9016-7; PMID: 16328158
  • Park H, Choi HJ, Kim J, Kim M, Rho SS, Hwang D, et al. Homeobox D1 regulates angiogenic functions of endothelial cells via integrin β1 expression. Biochem Biophys Res Commun 2011; 408:186 - 92; http://dx.doi.org/10.1016/j.bbrc.2011.04.017; PMID: 21501586
  • Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264:569 - 71; http://dx.doi.org/10.1126/science.7512751; PMID: 7512751
  • Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 2000; 156:1345 - 62; http://dx.doi.org/10.1016/S0002-9440(10)65005-5; PMID: 10751360
  • Mace KA, Hansen SL, Myers C, Young DM, Boudreau N. HOXA3 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound repair. J Cell Sci 2005; 118:2567 - 77; http://dx.doi.org/10.1242/jcs.02399; PMID: 15914537
  • Myers C, Charboneau A, Boudreau N. Homeobox B3 promotes capillary morphogenesis and angiogenesis. J Cell Biol 2000; 148:343 - 51; http://dx.doi.org/10.1083/jcb.148.2.343; PMID: 10648567
  • Hansen SL, Myers CA, Charboneau A, Young DM, Boudreau N. HoxD3 accelerates wound healing in diabetic mice. Am J Pathol 2003; 163:2421 - 31; http://dx.doi.org/10.1016/S0002-9440(10)63597-3; PMID: 14633614
  • Patel CV, Sharangpani R, Bandyopadhyay S, DiCorleto PE. Endothelial cells express a novel, tumor necrosis factor-alpha-regulated variant of HOXA9. J Biol Chem 1999; 274:1415 - 22; http://dx.doi.org/10.1074/jbc.274.3.1415; PMID: 9880515
  • Bruhl T, Urbich C, Aicher D, Acker-Palmer A, Zeiher AM, Dimmeler S. Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation. Circ Res 2004; 94:743 - 51; http://dx.doi.org/10.1161/01.RES.0000120861.27064.09; PMID: 14764452
  • Chen A, Cuevas I, Kenny PA, Miyake H, Mace K, Ghajar C, et al. Endothelial cell migration and vascular endothelial growth factor expression are the result of loss of breast tissue polarity. Cancer Res 2009; 69:6721 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-08-4069; PMID: 19654314
  • Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W, Boudreau N. A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol 2005; 3:240 - 52; http://dx.doi.org/10.1089/lrb.2005.3.240; PMID: 16379594
  • Arderiu G, Cuevas I, Chen A, Carrio M, East L, Boudreau NJ. HoxA5 stabilizes adherens junctions via increased Akt1. Cell Adh Migr 2007; 1:185 - 95; http://dx.doi.org/10.4161/cam.1.4.5448; PMID: 19262140
  • Winnik S, Klinkert M, Kurz H, Zoeller C, Heinke J, Wu Y, et al. HoxB5 induces endothelial sprouting in vitro and modifies intussusceptive angiogenesis in vivo involving angiopoietin-2. Cardiovasc Res 2009; 83:558 - 65; http://dx.doi.org/10.1093/cvr/cvp133; PMID: 19403561
  • Gorski DH, LePage DF, Patel CV, Copeland NG, Jenkins NA, Walsh K. Molecular cloning of a diverged homeobox gene that is rapidly down-regulated during the G0/G1 transition in vascular smooth muscle cells. Mol Cell Biol 1993; 13:3722 - 33; PMID: 8098844
  • Smith RC, Branellec D, Gorski DH, Guo K, Perlman H, Dedieu JF, et al. p21CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev 1997; 11:1674 - 89; http://dx.doi.org/10.1101/gad.11.13.1674; PMID: 9224717
  • Gorski DH, Leal AJ. Inhibition of endothelial cell activation by the homeobox gene Gax. J Surg Res 2003; 111:91 - 9; http://dx.doi.org/10.1016/S0022-4804(03)00042-8; PMID: 12842453
  • Douville JM, Cheung DY, Herbert KL, Moffatt T, Wigle JT. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21 and p16 in vascular endothelial cells. PLoS One 2011; 6:e29099; http://dx.doi.org/10.1371/journal.pone.0029099; PMID: 22206000
  • Patel S, Leal AD, Gorski DH. The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res 2005; 65:1414 - 24; http://dx.doi.org/10.1158/0008-5472.CAN-04-3431; PMID: 15735029
  • Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 2008; 111:1217 - 26; http://dx.doi.org/10.1182/blood-2007-07-104133; PMID: 17957028
  • Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341:738 - 46; http://dx.doi.org/10.1056/NEJM199909023411006; PMID: 10471461
  • DiPietro LA, Burns AL. Wound Healing: Methods and Protocols. Humana Press, 2003.
  • Mace KA, Restivo TE, Rinn JL, Paquet AC, Chang HY, Young DM, et al. HOXA3 modulates injury-induced mobilization and recruitment of bone marrow-derived cells. Stem Cells 2009; 27:1654 - 65; http://dx.doi.org/10.1002/stem.90; PMID: 19544454
  • Mahdipour E, Charnock JC, Mace KA. Hoxa3 promotes the differentiation of hematopoietic progenitor cells into proangiogenic Gr-1+CD11b+ myeloid cells. Blood 2011; 117:815 - 26; http://dx.doi.org/10.1182/blood-2009-12-259549; PMID: 20974673
  • Maclauchlan S, Skokos EA, Agah A, Zeng J, Tian W, Davidson JM, et al. Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and -9, and soluble VEGF. J Histochem Cytochem 2009; 57:301 - 13; http://dx.doi.org/10.1369/jhc.2008.952689; PMID: 19029404
  • Mack JA, Abramson SR, Ben Y, Coffin JC, Rothrock JK, Maytin EV, et al. Hoxb13 knockout adult skin exhibits high levels of hyaluronan and enhanced wound healing. FASEB J 2003; 17:1352 - 4; PMID: 12759339
  • Mack JA, Maytin EV. Persistent inflammation and angiogenesis during wound healing in K14-directed Hoxb13 transgenic mice. J Invest Dermatol 2010; 130:856 - 65; http://dx.doi.org/10.1038/jid.2009.305; PMID: 19759546
  • Hansen SL, Dosanjh A, Young DM, Boudreau N, Hoffman WY. Hemangiomas and homeobox gene expression. J Craniofac Surg 2006; 17:767 - 71; http://dx.doi.org/10.1097/00001665-200607000-00031; PMID: 16877932
  • Zhu Y, Cuevas IC, Gabriel RA, Su H, Nishimura S, Gao P, et al. Restoring transcription factor HoxA5 expression inhibits the growth of experimental hemangiomas in the brain. J Neuropathol Exp Neurol 2009; 68:626 - 32; http://dx.doi.org/10.1097/NEN.0b013e3181a491ce; PMID: 19458547
  • Caré A, Silvani A, Meccia E, Mattia G, Stoppacciaro A, Parmiani G, et al. HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol 1996; 16:4842 - 51; PMID: 8756643
  • Caré A, Silvani A, Meccia E, Mattia G, Peschle C, Colombo MP. Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene 1998; 16:3285 - 9; http://dx.doi.org/10.1038/sj.onc.1201875; PMID: 9681827
  • Carè A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A, et al. HOXB7: a key factor for tumor-associated angiogenic switch. Cancer Res 2001; 61:6532 - 9; PMID: 11522651
  • Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 2002; 99:11205 - 10; http://dx.doi.org/10.1073/pnas.172161899; PMID: 12163646
  • Hayashida T, Takahashi F, Chiba N, Brachtel E, Takahashi M, Godin-Heymann N, et al. HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis. Proc Natl Acad Sci U S A 2010; 107:1100 - 5; http://dx.doi.org/10.1073/pnas.0912710107; PMID: 20080567
  • Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994; 55:410 - 22; PMID: 7509844
  • Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004; 114:623 - 33; PMID: 15343380
  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438:820 - 7; http://dx.doi.org/10.1038/nature04186; PMID: 16341007
  • Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009; 4:e6562; http://dx.doi.org/10.1371/journal.pone.0006562; PMID: 19668347
  • Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8:1369 - 75; http://dx.doi.org/10.1038/ncb1507; PMID: 17128264
  • Page SH, Wright EK Jr., Gama L, Clements JE. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP. PLoS One 2011; 6:e22052; http://dx.doi.org/10.1371/journal.pone.0022052; PMID: 21760952
  • De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 2007; 130:1083 - 94; http://dx.doi.org/10.1016/j.cell.2007.08.019; PMID: 17825402
  • Argiropoulos B, Humphries RK. Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26:6766 - 76; http://dx.doi.org/10.1038/sj.onc.1210760; PMID: 17934484
  • Mahdipour E, Mace KA. Hox transcription factor regulation of adult bone-marrow-derived cell behaviour during tissue repair and regeneration. Expert Opin Biol Ther 2011; 11:1079 - 90; http://dx.doi.org/10.1517/14712598.2011.579096; PMID: 21513461
  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A 1998; 95:10632 - 6; http://dx.doi.org/10.1073/pnas.95.18.10632; PMID: 9724755
  • Déjardin J, Cavalli G. Epigenetic inheritance of chromatin states mediated by Polycomb and trithorax group proteins in Drosophila. Prog Mol Subcell Biol 2005; 38:31 - 63; http://dx.doi.org/10.1007/3-540-27310-7_2; PMID: 15881890
  • Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell 2007; 128:735 - 45; http://dx.doi.org/10.1016/j.cell.2007.02.009; PMID: 17320510
  • Schuettengruber B, Martinez AM, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 2011; 12:799 - 814; http://dx.doi.org/10.1038/nrm3230; PMID: 22108599
  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125:301 - 13; http://dx.doi.org/10.1016/j.cell.2006.02.043; PMID: 16630818
  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441:349 - 53; http://dx.doi.org/10.1038/nature04733; PMID: 16625203
  • Diehl F, Rössig L, Zeiher AM, Dimmeler S, Urbich C. The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation. Blood 2007; 109:1472 - 8; http://dx.doi.org/10.1182/blood-2006-08-039651; PMID: 17047146
  • Jung JH, Choi HJ, Maeng YS, Choi JY, Kim M, Kwon JY, et al. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells. Biochem Biophys Res Commun 2010; 400:523 - 30; http://dx.doi.org/10.1016/j.bbrc.2010.08.086; PMID: 20801102
  • Park JH, Lee JY, Shin DH, Jang KS, Kim HJ, Kong G. Loss of Mel-18 induces tumor angiogenesis through enhancing the activity and expression of HIF-1α mediated by the PTEN/PI3K/Akt pathway. Oncogene 2011; 30:4578 - 89; http://dx.doi.org/10.1038/onc.2011.174; PMID: 21602890
  • Shaw T, Martin P. Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep 2009; 10:881 - 6; http://dx.doi.org/10.1038/embor.2009.102; PMID: 19575012
  • Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell 2004; 15:57 - 67; http://dx.doi.org/10.1016/j.molcel.2004.06.020; PMID: 15225548
  • Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 2009; 114:2733 - 43; http://dx.doi.org/10.1182/blood-2009-03-213496; PMID: 19638619
  • Reynolds PA, Sigaroudinia M, Zardo G, Wilson MB, Benton GM, Miller CJ, et al. Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 2006; 281:24790 - 802; http://dx.doi.org/10.1074/jbc.M604175200; PMID: 16766534
  • Huo R, Ma Q, Wu JJ, Chin-Nuke K, Jing Y, Chen J, et al. Noninvasive electromagnetic fields on keratinocyte growth and migration. J Surg Res 2010; 162:299 - 307; http://dx.doi.org/10.1016/j.jss.2009.02.016; PMID: 19592020
  • Russell SB, Russell JD, Trupin KM, Gayden AE, Opalenik SR, Nanney LB, et al. Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol 2010; 130:2489 - 96; http://dx.doi.org/10.1038/jid.2010.162; PMID: 20555348
  • Carrio M, Arderiu G, Myers C, Boudreau NJ. Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Res 2005; 65:7177 - 85; http://dx.doi.org/10.1158/0008-5472.CAN-04-1717; PMID: 16103068
  • Wang Z, Dahiya S, Provencher H, Muir B, Carney E, Coser K, et al. The prognostic biomarkers HOXB13, IL17BR, and CHDH are regulated by estrogen in breast cancer. Clin Cancer Res 2007; 13:6327 - 34; http://dx.doi.org/10.1158/1078-0432.CCR-07-0310; PMID: 17975144
  • Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK, et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A 2007; 104:5527 - 32; http://dx.doi.org/10.1073/pnas.0701059104; PMID: 17369352
  • Takahashi O, Hamada J, Abe M, Hata S, Asano T, Takahashi Y, et al. Dysregulated expression of HOX and ParaHOX genes in human esophageal squamous cell carcinoma. Oncol Rep 2007; 17:753 - 60; PMID: 17342311
  • Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7:823 - 33; http://dx.doi.org/10.1038/nrc2253; PMID: 17957188
  • Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ, et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102:262 - 8; http://dx.doi.org/10.1182/blood-2002-10-3221; PMID: 12637319
  • Armstrong SA, Golub TR, Korsmeyer SJ. MLL-rearranged leukemias: insights from gene expression profiling. Semin Hematol 2003; 40:268 - 73; http://dx.doi.org/10.1016/S0037-1963(03)00196-3; PMID: 14582077
  • Jung C, Kim RS, Lee SJ, Wang C, Jeng MH. HOXB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T-cell factor 4. Cancer Res 2004; 64:3046 - 51; http://dx.doi.org/10.1158/0008-5472.CAN-03-2614; PMID: 15126340
  • Jung C, Kim RS, Zhang H, Lee SJ, Sheng H, Loehrer PJ, et al. HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation. Br J Cancer 2005; 92:2233 - 9; http://dx.doi.org/10.1038/sj.bjc.6602631; PMID: 15928669
  • Jin K, Kong X, Shah T, Penet MF, Wildes F, Sgroi DC, et al. The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci U S A 2012; 109:2736 - 41; http://dx.doi.org/10.1073/pnas.1018859108; PMID: 21690342
  • Gilbert PM, Mouw JK, Unger MA, Lakins JN, Gbegnon MK, Clemmer VB, et al. HOXA9 regulates BRCA1 expression to modulate human breast tumor phenotype. J Clin Invest 2010; 120:1535 - 50; http://dx.doi.org/10.1172/JCI39534; PMID: 20389018
  • Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 1997; 89:1922 - 30; PMID: 9058712
  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286:531 - 7; http://dx.doi.org/10.1126/science.286.5439.531; PMID: 10521349
  • Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence?. Nat Rev Cancer 2002; 2:777 - 85; http://dx.doi.org/10.1038/nrc907; PMID: 12360280
  • Han L, Witmer PD, Casey E, Valle D, Sukumar S. DNA methylation regulates MicroRNA expression. Cancer Biol Ther 2007; 6:1284 - 8; PMID: 17660710
  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449:682 - 8; http://dx.doi.org/10.1038/nature06174; PMID: 17898713
  • Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10:361 - 71; http://dx.doi.org/10.1038/nrc2826; PMID: 20357775
  • González-Reyes A, Morata G. The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell 1990; 61:515 - 22; http://dx.doi.org/10.1016/0092-8674(90)90533-K; PMID: 1970762
  • Capovilla M, Botas J. Functional dominance among Hox genes: repression dominates activation in the regulation of Dpp. Development 1998; 125:4949 - 57; PMID: 9811579
  • González-Reyes A, Urquia N, Gehring WJ, Struhl G, Morata G. Are cross-regulatory interactions between homoeotic genes functionally significant?. Nature 1990; 344:78 - 80; http://dx.doi.org/10.1038/344078a0; PMID: 1968232
  • Duboule D. Patterning in the vertebrate limb. Curr Opin Genet Dev 1991; 1:211 - 6; http://dx.doi.org/10.1016/S0959-437X(05)80072-3; PMID: 1688004
  • Schöck F, Reischl J, Wimmer E, Taubert H, Purnell BA, Jäckle H. Phenotypic suppression of empty spiracles is prevented by buttonhead. Nature 2000; 405:351 - 4; http://dx.doi.org/10.1038/35012620; PMID: 10830964
  • Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304:594 - 6; http://dx.doi.org/10.1126/science.1097434; PMID: 15105502
  • Yekta S, Tabin CJ, Bartel DP. MicroRNAs in the Hox network: an apparent link to posterior prevalence. Nat Rev Genet 2008; 9:789 - 96; http://dx.doi.org/10.1038/nrg2400; PMID: 18781158
  • Heuer JG, Li K, Kaufman TC. The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 1995; 121:3861 - 76; PMID: 8582295
  • Wang BB, Müller-Immergluck MM, Austin J, Robinson NT, Chisholm A, Kenyon C. A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 1993; 74:29 - 42; http://dx.doi.org/10.1016/0092-8674(93)90292-X; PMID: 8101474
  • Lamka ML, Boulet AM, Sakonju S. Ectopic expression of UBX and ABD-B proteins during Drosophila embryogenesis: competition, not a functional hierarchy, explains phenotypic suppression. Development 1992; 116:841 - 54; PMID: 1363544
  • Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002; 16:1167 - 81; http://dx.doi.org/10.1101/gad.976502; PMID: 12023297
  • Chang CP, Shen WF, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev 1995; 9:663 - 74; http://dx.doi.org/10.1101/gad.9.6.663; PMID: 7729685
  • Shen WF, Chang CP, Rozenfeld S, Sauvageau G, Humphries RK, Lu M, et al. Hox homeodomain proteins exhibit selective complex stabilities with Pbx and DNA. Nucleic Acids Res 1996; 24:898 - 906; http://dx.doi.org/10.1093/nar/24.5.898; PMID: 8600458
  • Shen WF, Rozenfeld S, Kwong A, Köm ves LG, Lawrence HJ, Largman C. HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 1999; 19:3051 - 61; PMID: 10082572
  • Azpiazu N, Morata G. Functional and regulatory interactions between Hox and extradenticle genes. Genes Dev 1998; 12:261 - 73; http://dx.doi.org/10.1101/gad.12.2.261; PMID: 9436985
  • Jaffe L, Ryoo HD, Mann RS. A role for phosphorylation by casein kinase II in modulating Antennapedia activity in Drosophila. Genes Dev 1997; 11:1327 - 40; http://dx.doi.org/10.1101/gad.11.10.1327; PMID: 9171376
  • Ronshaugen M, McGinnis N, McGinnis W. Hox protein mutation and macroevolution of the insect body plan. Nature 2002; 415:914 - 7; http://dx.doi.org/10.1038/nature716; PMID: 11859370
  • Chen H, Chung S, Sukumar S. HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol 2004; 24:924 - 35; http://dx.doi.org/10.1128/MCB.24.2.924-935.2004; PMID: 14701762
  • Stelnicki EJ, Arbeit J, Cass DL, Saner C, Harrison M, Largman C. Modulation of the human homeobox genes PRX-2 and HOXB13 in scarless fetal wounds. J Invest Dermatol 1998; 111:57 - 63; http://dx.doi.org/10.1046/j.1523-1747.1998.00238.x; PMID: 9665387
  • Jain K, Sykes V, Kordula T, Lanning D. Homeobox genes Hoxd3 and Hoxd8 are differentially expressed in fetal mouse excisional wounds. J Surg Res 2008; 148:45 - 8; http://dx.doi.org/10.1016/j.jss.2008.02.053; PMID: 18570930
  • Stelnicki EJ, Kömüves LG, Holmes D, Clavin W, Harrison MR, Adzick NS, et al. The human homeobox genes MSX-1, MSX-2, and MOX-1 are differentially expressed in the dermis and epidermis in fetal and adult skin. Differentiation 1997; 62:33 - 41; http://dx.doi.org/10.1046/j.1432-0436.1997.6210033.x; PMID: 9373945