805
Views
8
CrossRef citations to date
0
Altmetric
Commentary

WD40-repeat proteins control the flow of Gβγ signaling for directional cell migration

&
Pages 214-218 | Received 29 Sep 2012, Accepted 17 Nov 2012, Published online: 09 Jan 2013

References

  • Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265 - 89; http://dx.doi.org/10.1146/annurev.biophys.093008.131228; PMID: 20192768
  • Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 2004; 1:95 - 104; PMID: 16212895
  • Weiner OD. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr Opin Cell Biol 2002; 14:196 - 202; http://dx.doi.org/10.1016/S0955-0674(02)00310-1; PMID: 11891119
  • Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Curr Opin Genet Dev 2006; 16:339 - 47; http://dx.doi.org/10.1016/j.gde.2006.06.016; PMID: 16806895
  • Wang F. The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb Perspect Biol 2009; 1:a002980; http://dx.doi.org/10.1101/cshperspect.a002980; PMID: 20066099
  • Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 2003; 114:201 - 14; http://dx.doi.org/10.1016/S0092-8674(03)00555-5; PMID: 12887922
  • Chung CY, Potikyan G, Firtel RA. Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol Cell 2001; 7:937 - 47; http://dx.doi.org/10.1016/S1097-2765(01)00247-7; PMID: 11389841
  • Funamoto S, Meili R, Lee S, Parry L, Firtel RA. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 2002; 109:611 - 23; http://dx.doi.org/10.1016/S0092-8674(02)00755-9; PMID: 12062104
  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 2000; 287:1037 - 40; http://dx.doi.org/10.1126/science.287.5455.1037; PMID: 10669415
  • Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol 2006; 174:647 - 52; http://dx.doi.org/10.1083/jcb.200602142; PMID: 16943182
  • Li Z, Hannigan M, Mo Z, Liu B, Lu W, Wu Y, et al. Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 2003; 114:215 - 27; http://dx.doi.org/10.1016/S0092-8674(03)00559-2; PMID: 12887923
  • Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 2002; 109:599 - 610; http://dx.doi.org/10.1016/S0092-8674(02)00745-6; PMID: 12062103
  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol 2005; 7:399 - 404; http://dx.doi.org/10.1038/ncb1236; PMID: 15793569
  • Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HRA. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 2002; 4:509 - 13; http://dx.doi.org/10.1038/ncb811; PMID: 12080346
  • Liu L, Das S, Losert W, Parent CA. mTORC2 regulates neutrophil chemotaxis in a cAMP- and RhoA-dependent fashion. Dev Cell 2010; 19:845 - 57; http://dx.doi.org/10.1016/j.devcel.2010.11.004; PMID: 21145500
  • Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, et al. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 2007; 12:603 - 14; http://dx.doi.org/10.1016/j.devcel.2007.03.005; PMID: 17419997
  • Liu X, Ma B, Malik AB, Tang H, Yang T, Sun B, et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol 2012; 13:457 - 64; http://dx.doi.org/10.1038/ni.2258; PMID: 22447027
  • Tang W, Zhang Y, Xu W, Harden TK, Sondek J, Sun L, et al. A PLCβ/PI3Kγ-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev Cell 2011; 21:1038 - 50; http://dx.doi.org/10.1016/j.devcel.2011.10.023; PMID: 22172670
  • Dong X, Mo Z, Bokoch G, Guo C, Li Z, Wu D. P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr Biol 2005; 15:1874 - 9; http://dx.doi.org/10.1016/j.cub.2005.09.014; PMID: 16243036
  • Welch HC, Condliffe AM, Milne LJ, Ferguson GJ, Hill K, Webb LM, et al. P-Rex1 regulates neutrophil function. Curr Biol 2005; 15:1867 - 73; http://dx.doi.org/10.1016/j.cub.2005.09.050; PMID: 16243035
  • Smrcka AV. G protein βγ subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci 2008; 65:2191 - 214; http://dx.doi.org/10.1007/s00018-008-8006-5; PMID: 18488142
  • Gómez-Moutón C, Lacalle RA, Mira E, Jiménez-Baranda S, Barber DF, Carrera AC, et al. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 2004; 164:759 - 68; http://dx.doi.org/10.1083/jcb.200309101; PMID: 14981096
  • Jin T, Zhang N, Long Y, Parent CA, Devreotes PN. Localization of the G protein betagamma complex in living cells during chemotaxis. Science 2000; 287:1034 - 6; http://dx.doi.org/10.1126/science.287.5455.1034; PMID: 10669414
  • Dell EJ, Connor J, Chen S, Stebbins EG, Skiba NP, Mochly-Rosen D, et al. The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. J Biol Chem 2002; 277:49888 - 95; http://dx.doi.org/10.1074/jbc.M202755200; PMID: 12359736
  • Stirnimann CU, Petsalaki E, Russell RB, Müller CW. WD40 proteins propel cellular networks. Trends Biochem Sci 2010; 35:565 - 74; http://dx.doi.org/10.1016/j.tibs.2010.04.003; PMID: 20451393
  • Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22; http://dx.doi.org/10.1186/1478-811X-9-22; PMID: 21978545
  • Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 2006; 8:1277 - 83; http://dx.doi.org/10.1038/ncb1490; PMID: 17041588
  • Whiteway MS, Wu C, Leeuw T, Clark K, Fourest-Lieuvin A, Thomas DY, et al. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 1995; 269:1572 - 5; http://dx.doi.org/10.1126/science.7667635; PMID: 7667635
  • Chen S, Dell EJ, Lin F, Sai J, Hamm HE. RACK1 regulates specific functions of Gbetagamma. J Biol Chem 2004; 279:17861 - 8; http://dx.doi.org/10.1074/jbc.M313727200; PMID: 14963031
  • Chen S, Lin F, Hamm HE. RACK1 binds to a signal transfer region of G betagamma and inhibits phospholipase C beta2 activation. J Biol Chem 2005; 280:33445 - 52; http://dx.doi.org/10.1074/jbc.M505422200; PMID: 16051595
  • Chen S, Lin F, Shin ME, Wang F, Shen L, Hamm HE. RACK1 regulates directional cell migration by acting on G betagamma at the interface with its effectors PLC beta and PI3K gamma. Mol Biol Cell 2008; 19:3909 - 22; http://dx.doi.org/10.1091/mbc.E08-04-0433; PMID: 18596232
  • Sun Z, Tang X, Lin F, Chen S. The WD40 repeat protein WDR26 binds Gβγ and promotes Gβγ-dependent signal transduction and leukocyte migration. J Biol Chem 2011; 286:43902 - 12; http://dx.doi.org/10.1074/jbc.M111.301382; PMID: 22065575
  • Ruiz Carrillo D, Chandrasekaran R, Nilsson M, Cornvik T, Liew CW, Tan SM, et al. Structure of human Rack1 protein at a resolution of 2.45 Å. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:867 - 72; http://dx.doi.org/10.1107/S1744309112027480; PMID: 22869111
  • Yuan C, Sato M, Lanier SM, Smrcka AV. Signaling by a non-dissociated complex of G protein βγ and α subunits stimulated by a receptor-independent activator of G protein signaling, AGS8. J Biol Chem 2007; 282:19938 - 47; http://dx.doi.org/10.1074/jbc.M700396200; PMID: 17446173
  • Tang X, Sun Z, Runne C, Madsen J, Domann F, Henry M, et al. A critical role of Gbetagamma in tumorigenesis and metastasis of breast cancer. J Biol Chem 2011; 286:13244 - 54; http://dx.doi.org/10.1074/jbc.M110.206615; PMID: 21349837
  • Bookout AL, Finney AE, Guo R, Peppel K, Koch WJ, Daaka Y. Targeting Gbetagamma signaling to inhibit prostate tumor formation and growth. J Biol Chem 2003; 278:37569 - 73; http://dx.doi.org/10.1074/jbc.M306276200; PMID: 12869546
  • Shi S, Deng YZ, Zhao JS, Ji XD, Shi J, Feng YX, et al. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 2012; 287:7845 - 58; http://dx.doi.org/10.1074/jbc.M111.315416; PMID: 22262830
  • Deng YZ, Yao F, Li JJ, Mao ZF, Hu PT, Long LY, et al. RACK1 suppresses gastric tumorigenesis by stabilizing the β-catenin destruction complex. Gastroenterology 2012; 142:812 - 23, e15; http://dx.doi.org/10.1053/j.gastro.2011.12.046; PMID: 22240482

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.