2,805
Views
62
CrossRef citations to date
0
Altmetric
Review

Actin binding proteins

Their ups and downs in metastatic life

Pages 199-213 | Received 27 Sep 2012, Accepted 07 Dec 2012, Published online: 09 Jan 2013

References

  • Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2:442 - 54; http://dx.doi.org/10.1038/nrc822; PMID: 12189386
  • Grünert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 2003; 4:657 - 65; http://dx.doi.org/10.1038/nrm1175; PMID: 12923528
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9:265 - 73; http://dx.doi.org/10.1038/nrc2620; PMID: 19262571
  • Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34:255 - 68; http://dx.doi.org/10.1002/gcc.10083; PMID: 12007186
  • Navarro P, Gómez M, Pizarro A, Gamallo C, Quintanilla M, Cano A. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 1991; 115:517 - 33; http://dx.doi.org/10.1083/jcb.115.2.517; PMID: 1918152
  • Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2:84 - 9; http://dx.doi.org/10.1038/35000034; PMID: 10655587
  • Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76 - 83; http://dx.doi.org/10.1038/35000025; PMID: 10655586
  • Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res 2010; 8:629 - 42; http://dx.doi.org/10.1158/1541-7786.MCR-10-0139; PMID: 20460404
  • Ridley AJ. Life at the leading edge. Cell 2011; 145:1012 - 22; http://dx.doi.org/10.1016/j.cell.2011.06.010; PMID: 21703446
  • Vignjevic D, Montagnac G. Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 2008; 18:12 - 22; http://dx.doi.org/10.1016/j.semcancer.2007.08.001; PMID: 17928234
  • Olson MF, Sahai E. The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 2009; 26:273 - 87; http://dx.doi.org/10.1007/s10585-008-9174-2; PMID: 18498004
  • Machesky LM. Lamellipodia and filopodia in metastasis and invasion. FEBS Lett 2008; 582:2102 - 11; http://dx.doi.org/10.1016/j.febslet.2008.03.039; PMID: 18396168
  • Wehrle-Haller B. Structure and function of focal adhesions. Curr Opin Cell Biol 2012; 24:116 - 24; http://dx.doi.org/10.1016/j.ceb.2011.11.001; PMID: 22138388
  • Clark K, Langeslag M, Figdor CG, van Leeuwen FN. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol 2007; 17:178 - 86; http://dx.doi.org/10.1016/j.tcb.2007.02.002; PMID: 17320396
  • Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol 2008; 9:960 - 9; http://dx.doi.org/10.1038/ni.f.212; PMID: 18711433
  • Panková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell Mol Life Sci 2010; 67:63 - 71; http://dx.doi.org/10.1007/s00018-009-0132-1; PMID: 19707854
  • Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol 2010; 188:11 - 9; http://dx.doi.org/10.1083/jcb.200909003; PMID: 19951899
  • Guck J, Lautenschläger F, Paschke S, Beil M. Critical review: cellular mechanobiology and amoeboid migration. Integr Biol (Camb) 2010; 2:575 - 83; http://dx.doi.org/10.1039/c0ib00050g; PMID: 20871906
  • Charras GT. A short history of blebbing. J Microsc 2008; 231:466 - 78; http://dx.doi.org/10.1111/j.1365-2818.2008.02059.x; PMID: 18755002
  • Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr Biol 2006; 16:1515 - 23; http://dx.doi.org/10.1016/j.cub.2006.05.065; PMID: 16890527
  • Lämmermann T, Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr Opin Cell Biol 2009; 21:636 - 44; http://dx.doi.org/10.1016/j.ceb.2009.05.003; PMID: 19523798
  • Charras GT, Hu CK, Coughlin M, Mitchison TJ. Reassembly of contractile actin cortex in cell blebs. J Cell Biol 2006; 175:477 - 90; http://dx.doi.org/10.1083/jcb.200602085; PMID: 17088428
  • Wilson CA, Tsuchida MA, Allen GM, Barnhart EL, Applegate KT, Yam PT, et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 2010; 465:373 - 7; http://dx.doi.org/10.1038/nature08994; PMID: 20485438
  • Mellor H. The role of formins in filopodia formation. Biochim Biophys Acta 2010; 1803:191 - 200; http://dx.doi.org/10.1016/j.bbamcr.2008.12.018; PMID: 19171166
  • Yu X, Machesky LM. Cells assemble invadopodia-like structures and invade into matrigel in a matrix metalloprotease dependent manner in the circular invasion assay. PLoS One 2012; 7:e30605; http://dx.doi.org/10.1371/journal.pone.0030605; PMID: 22347388
  • Wolf K, Friedl P. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 2009; 26:289 - 98; http://dx.doi.org/10.1007/s10585-008-9190-2; PMID: 18600304
  • Yamaguchi H. Pathological roles of invadopodia in cancer invasion and metastasis. Eur J Cell Biol 2012; 91:902 - 7; http://dx.doi.org/10.1016/j.ejcb.2012.04.005; PMID: 22658792
  • Murphy DA, Courtneidge SA. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 2011; 12:413 - 26; http://dx.doi.org/10.1038/nrm3141; PMID: 21697900
  • Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J Cell Sci 2012; 125:724 - 34; http://dx.doi.org/10.1242/jcs.092726; PMID: 22389406
  • Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J Cell Biol 2011; 195:903 - 20; http://dx.doi.org/10.1083/jcb.201103045; PMID: 22105349
  • Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, Symons M, et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 2005; 168:441 - 52; http://dx.doi.org/10.1083/jcb.200407076; PMID: 15684033
  • Calle Y, Chou HC, Thrasher AJ, Jones GE. Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. J Pathol 2004; 204:460 - 9; http://dx.doi.org/10.1002/path.1651; PMID: 15495215
  • Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J Cell Biol 2010; 189:541 - 56; http://dx.doi.org/10.1083/jcb.200909113; PMID: 20421424
  • Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu X, König I, et al. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 2010; 20:339 - 45; http://dx.doi.org/10.1016/j.cub.2009.12.035; PMID: 20137952
  • Hillberg L, Zhao Rathje LS, Nyåkern-Meazza M, Helfand B, Goldman RD, Schutt CE, et al. Tropomyosins are present in lamellipodia of motile cells. Eur J Cell Biol 2006; 85:399 - 409; http://dx.doi.org/10.1016/j.ejcb.2005.12.005; PMID: 16524642
  • Boczkowska M, Rebowski G, Petoukhov MV, Hayes DB, Svergun DI, Dominguez R. X-ray scattering study of activated Arp2/3 complex with bound actin-WCA. Structure 2008; 16:695 - 704; http://dx.doi.org/10.1016/j.str.2008.02.013; PMID: 18462674
  • Insall RH, Machesky LM. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell 2009; 17:310 - 22; http://dx.doi.org/10.1016/j.devcel.2009.08.012; PMID: 19758556
  • Kirkbride KC, Sung BH, Sinha S, Weaver AM. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adh Migr 2011; 5:187 - 98; http://dx.doi.org/10.4161/cam.5.2.14773; PMID: 21258212
  • Derivery E, Gautreau A. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 2010; 32:119 - 31; http://dx.doi.org/10.1002/bies.200900123; PMID: 20091750
  • Takenawa T, Suetsugu S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007; 8:37 - 48; http://dx.doi.org/10.1038/nrm2069; PMID: 17183359
  • Kurisu S, Takenawa T. WASP and WAVE family proteins: friends or foes in cancer invasion?. Cancer Sci 2010; 101:2093 - 104; http://dx.doi.org/10.1111/j.1349-7006.2010.01654.x; PMID: 20707804
  • Yang C, Svitkina T. Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh Migr 2011; 5:402 - 8; http://dx.doi.org/10.4161/cam.5.5.16971; PMID: 21975549
  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S, Vasiliev JM, et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 2003; 160:409 - 21; http://dx.doi.org/10.1083/jcb.200210174; PMID: 12566431
  • Johnston SA, Bramble JP, Yeung CL, Mendes PM, Machesky LM. Arp2/3 complex activity in filopodia of spreading cells. BMC Cell Biol 2008; 9:65; http://dx.doi.org/10.1186/1471-2121-9-65; PMID: 19068115
  • Yamashiro-Matsumura S, Matsumura F. Purification and characterization of an F-actin-bundling 55-kilodalton protein from HeLa cells. J Biol Chem 1985; 260:5087 - 97; PMID: 3886649
  • Sedeh RS, Fedorov AA, Fedorov EV, Ono S, Matsumura F, Almo SC, et al. Structure, evolutionary conservation, and conformational dynamics of Homo sapiens fascin-1, an F-actin crosslinking protein. J Mol Biol 2010; 400:589 - 604; http://dx.doi.org/10.1016/j.jmb.2010.04.043; PMID: 20434460
  • Anilkumar N, Parsons M, Monk R, Ng T, Adams JC. Interaction of fascin and protein kinase Calpha: a novel intersection in cell adhesion and motility. EMBO J 2003; 22:5390 - 402; http://dx.doi.org/10.1093/emboj/cdg521; PMID: 14532112
  • Hashimoto Y, Kim DJ, Adams JC. The roles of fascins in health and disease. J Pathol 2011; 224:289 - 300; http://dx.doi.org/10.1002/path.2894; PMID: 21618240
  • Adams JC. Roles of fascin in cell adhesion and motility. Curr Opin Cell Biol 2004; 16:590 - 6; http://dx.doi.org/10.1016/j.ceb.2004.07.009; PMID: 15363811
  • Parsons M, Adams JC. Rac regulates the interaction of fascin with protein kinase C in cell migration. J Cell Sci 2008; 121:2805 - 13; http://dx.doi.org/10.1242/jcs.022509; PMID: 18716283
  • Jayo A, Parsons M, Adams JC. A novel Rho-dependent pathway that drives interaction of fascin-1 with p-Lin-11/Isl-1/Mec-3 kinase (LIMK) 1/2 to promote fascin-1/actin binding and filopodia stability. BMC Biol 2012; 10:72; http://dx.doi.org/10.1186/1741-7007-10-72; PMID: 22883572
  • Yamakita Y, Ono S, Matsumura F, Yamashiro S. Phosphorylation of human fascin inhibits its actin binding and bundling activities. J Biol Chem 1996; 271:12632 - 8; http://dx.doi.org/10.1074/jbc.271.21.12632; PMID: 8647875
  • Hashimoto Y, Parsons M, Adams JC. Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis. Mol Biol Cell 2007; 18:4591 - 602; http://dx.doi.org/10.1091/mbc.E07-02-0157; PMID: 17855511
  • Ishikawa R, Sakamoto T, Ando T, Higashi-Fujime S, Kohama K. Polarized actin bundles formed by human fascin-1: their sliding and disassembly on myosin II and myosin V in vitro. J Neurochem 2003; 87:676 - 85; http://dx.doi.org/10.1046/j.1471-4159.2003.02058.x; PMID: 14535950
  • Ricca BL, Rock RS. The stepping pattern of myosin X is adapted for processive motility on bundled actin. Biophys J 2010; 99:1818 - 26; http://dx.doi.org/10.1016/j.bpj.2010.06.066; PMID: 20858426
  • Ponti A, Machacek M, Gupton SL, Waterman-Storer CM, Danuser G. Two distinct actin networks drive the protrusion of migrating cells. Science 2004; 305:1782 - 6; http://dx.doi.org/10.1126/science.1100533; PMID: 15375270
  • Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15:333 - 41; http://dx.doi.org/10.1016/j.tcb.2005.04.007; PMID: 15953552
  • DesMarais V, Ichetovkin I, Condeelis J, Hitchcock-DeGregori SE. Spatial regulation of actin dynamics: a tropomyosin-free, actin-rich compartment at the leading edge. J Cell Sci 2002; 115:4649 - 60; http://dx.doi.org/10.1242/jcs.00147; PMID: 12415009
  • Phillips GN Jr., Lattman EE, Cummins P, Lee KY, Cohen C. Crystal structure and molecular interactions of tropomyosin. Nature 1979; 278:413 - 7; http://dx.doi.org/10.1038/278413a0; PMID: 450047
  • Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P, Martin C, et al. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 2011; 21:539 - 50; http://dx.doi.org/10.1016/j.cub.2011.03.007; PMID: 21458264
  • Ono S, Ono K. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics. J Cell Biol 2002; 156:1065 - 76; http://dx.doi.org/10.1083/jcb.200110013; PMID: 11901171
  • Ishikawa R, Yamashiro S, Matsumura F. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem 1989; 264:7490 - 7; PMID: 2540194
  • Bryce NS, Schevzov G, Ferguson V, Percival JM, Lin JJ, Matsumura F, et al. Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 2003; 14:1002 - 16; http://dx.doi.org/10.1091/mbc.E02-04-0244; PMID: 12631719
  • Kaneda A, Kaminishi M, Sugimura T, Ushijima T. Decreased expression of the seven ARP2/3 complex genes in human gastric cancers. Cancer Lett 2004; 212:203 - 10; http://dx.doi.org/10.1016/j.canlet.2004.03.020; PMID: 15279900
  • Otsubo T, Iwaya K, Mukai Y, Mizokami Y, Serizawa H, Matsuoka T, et al. Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol 2004; 17:461 - 7; http://dx.doi.org/10.1038/modpathol.3800062; PMID: 14990971
  • Kim DH, Bae J, Lee JW, Kim SY, Kim YH, Bae JY, et al. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness. Proteomics Clin Appl 2009; 3:30 - 40; http://dx.doi.org/10.1002/prca.200800167; PMID: 21136934
  • Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, Fujimura L, et al. Actin-related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol 2012; 40:1770 - 8; PMID: 22378351
  • Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004; 64:8585 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-04-1136; PMID: 15574765
  • Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M, Segall JE, et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 2007; 67:3505 - 11; http://dx.doi.org/10.1158/0008-5472.CAN-06-3714; PMID: 17440055
  • Zheng HC, Zheng YS, Li XH, Takahashi H, Hara T, Masuda S, et al. Arp2/3 overexpression contributed to pathogenesis, growth and invasion of gastric carcinoma. Anticancer Res 2008; 28:4B 2225 - 32; PMID: 18751399
  • Yokotsuka M, Iwaya K, Saito T, Pandiella A, Tsuboi R, Kohno N, et al. Overexpression of HER2 signaling to WAVE2-Arp2/3 complex activates MMP-independent migration in breast cancer. Breast Cancer Res Treat 2011; 126:311 - 8; http://dx.doi.org/10.1007/s10549-010-0896-x; PMID: 20419393
  • Iwaya K, Norio K, Mukai K. Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol 2007; 20:339 - 43; http://dx.doi.org/10.1038/modpathol.3800741; PMID: 17277766
  • Iwaya K, Oikawa K, Semba S, Tsuchiya B, Mukai Y, Otsubo T, et al. Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci 2007; 98:992 - 9; http://dx.doi.org/10.1111/j.1349-7006.2007.00488.x; PMID: 17459058
  • Fernando HS, Kynaston HG, Jiang WG. WASP and WAVE proteins: vital intrinsic regulators of cell motility and their role in cancer (review). [review] Int J Mol Med 2009; 23:141 - 8; PMID: 19148537
  • Takahashi K, Suzuki K. Requirement of kinesin-mediated membrane transport of WAVE2 along microtubules for lamellipodia formation promoted by hepatocyte growth factor. Exp Cell Res 2008; 314:2313 - 22; http://dx.doi.org/10.1016/j.yexcr.2008.04.009; PMID: 18514191
  • Takahashi K, Suzuki K. Membrane transport of WAVE2 and lamellipodia formation require Pak1 that mediates phosphorylation and recruitment of stathmin/Op18 to Pak1-WAVE2-kinesin complex. Cell Signal 2009; 21:695 - 703; http://dx.doi.org/10.1016/j.cellsig.2009.01.007; PMID: 19162178
  • Nakagawa H, Miki H, Nozumi M, Takenawa T, Miyamoto S, Wehland J, et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J Cell Sci 2003; 116:2577 - 83; http://dx.doi.org/10.1242/jcs.00462; PMID: 12734400
  • Wang WS, Zhong HJ, Xiao DW, Huang X, Liao LD, Xie ZF, et al. The expression of CFL1 and N-WASP in esophageal squamous cell carcinoma and its correlation with clinicopathological features. Dis Esophagus 2010; 23:512 - 21; http://dx.doi.org/10.1111/j.1442-2050.2009.01035.x; PMID: 20095995
  • Sossey-Alaoui K, Safina A, Li X, Vaughan MM, Hicks DG, Bakin AV, et al. Down-regulation of WAVE3, a metastasis promoter gene, inhibits invasion and metastasis of breast cancer cells. Am J Pathol 2007; 170:2112 - 21; http://dx.doi.org/10.2353/ajpath.2007.060975; PMID: 17525277
  • Sossey-Alaoui K, Ranalli TA, Li X, Bakin AV, Cowell JK. WAVE3 promotes cell motility and invasion through the regulation of MMP-1, MMP-3, and MMP-9 expression. Exp Cell Res 2005; 308:135 - 45; http://dx.doi.org/10.1016/j.yexcr.2005.04.011; PMID: 15907837
  • Fernando HS, Sanders AJ, Kynaston HG, Jiang WG. WAVE3 is associated with invasiveness in prostate cancer cells. Urol Oncol 2010; 28:320 - 7; http://dx.doi.org/10.1016/j.urolonc.2008.12.022; PMID: 19395286
  • Fernando HS, Davies SR, Chhabra A, Watkins G, Douglas-Jones A, Kynaston H, et al. Expression of the WASP verprolin-homologues (WAVE members) in human breast cancer. Oncology 2007; 73:376 - 83; http://dx.doi.org/10.1159/000136157; PMID: 18509249
  • Martin TA, Pereira G, Watkins G, Mansel RE, Jiang WG. N-WASP is a putative tumour suppressor in breast cancer cells, in vitro and in vivo, and is associated with clinical outcome in patients with breast cancer. Clin Exp Metastasis 2008; 25:97 - 108; http://dx.doi.org/10.1007/s10585-007-9120-8; PMID: 17985201
  • Khurana S, George SP. The role of actin bundling proteins in the assembly of filopodia in epithelial cells. Cell Adh Migr 2011; 5:409 - 20; http://dx.doi.org/10.4161/cam.5.5.17644; PMID: 21975550
  • Sato J, Fujiwara M, Kawakami T, Sumiishi A, Sakata S, Sakamoto A, et al. Fascin expression in dendritic cells and tumor epithelium in thymoma and thymic carcinoma. Oncol Lett 2011; 2:1025 - 32; PMID: 22848263
  • Gun BD, Bahadir B, Bektas S, Barut F, Yurdakan G, Kandemir NO, et al. Clinicopathological significance of fascin and CD44v6 expression in endometrioid carcinoma. Diagn Pathol 2012; 7:80; http://dx.doi.org/10.1186/1746-1596-7-80; PMID: 22784357
  • Dim DC, Jiang F, Qiu Q, Li T, Darwin P, Rodgers WH, et al. The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration. Diagn Cytopathol 2011; In press http://dx.doi.org/10.1002/dc.21684; PMID: 21538952
  • Huang X, Ji J, Xue H, Zhang F, Han X, Cai Y, et al. Fascin and cortactin expression is correlated with a poor prognosis in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2012; 24:633 - 9; http://dx.doi.org/10.1097/MEG.0b013e3283515a18; PMID: 22495401
  • Xu YF, Yu SN, Lu ZH, Liu JP, Chen J. Fascin promotes the motility and invasiveness of pancreatic cancer cells. World J Gastroenterol 2011; 17:4470 - 8; http://dx.doi.org/10.3748/wjg.v17.i40.4470; PMID: 22110277
  • Alam H, Bhate AV, Gangadaran P, Sawant SS, Salot S, Sehgal L, et al. Fascin overexpression promotes neoplastic progression in oral squamous cell carcinoma. BMC Cancer 2012; 12:32; http://dx.doi.org/10.1186/1471-2407-12-32; PMID: 22264292
  • Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999; 21:163 - 7; http://dx.doi.org/10.1038/5947; PMID: 9988266
  • Boyd J, Risinger JI, Wiseman RW, Merrick BA, Selkirk JK, Barrett JC. Regulation of microfilament organization and anchorage-independent growth by tropomyosin 1. Proc Natl Acad Sci U S A 1995; 92:11534 - 8; http://dx.doi.org/10.1073/pnas.92.25.11534; PMID: 8524798
  • Mahadev K, Raval G, Bharadwaj S, Willingham MC, Lange EM, Vonderhaar B, et al. Suppression of the transformed phenotype of breast cancer by tropomyosin-1. Exp Cell Res 2002; 279:40 - 51; http://dx.doi.org/10.1006/excr.2002.5583; PMID: 12213212
  • Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene 2003; 22:6194 - 203; http://dx.doi.org/10.1038/sj.onc.1206719; PMID: 13679858
  • Pawlak G, McGarvey TW, Nguyen TB, Tomaszewski JE, Puthiyaveettil R, Malkowicz SB, et al. Alterations in tropomyosin isoform expression in human transitional cell carcinoma of the urinary bladder. Int J Cancer 2004; 110:368 - 73; http://dx.doi.org/10.1002/ijc.20151; PMID: 15095301
  • Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, et al. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 2005; 24:5043 - 52; http://dx.doi.org/10.1038/sj.onc.1208688; PMID: 15897890
  • Lees JG, Bach CT, Bradbury P, Paul A, Gunning PW, O’Neill GM. The actin-associating protein Tm5NM1 blocks mesenchymal motility without transition to amoeboid motility. Oncogene 2011; 30:1241 - 51; http://dx.doi.org/10.1038/onc.2010.516; PMID: 21076470
  • Bach CT, Creed S, Zhong J, Mahmassani M, Schevzov G, Stehn J, et al. Tropomyosin isoform expression regulates the transition of adhesions to determine cell speed and direction. Mol Cell Biol 2009; 29:1506 - 14; http://dx.doi.org/10.1128/MCB.00857-08; PMID: 19124607
  • Lee HH, Lim CA, Cheong YT, Singh M, Gam LH. Comparison of protein expression profiles of different stages of lymph nodes metastasis in breast cancer. Int J Biol Sci 2012; 8:353 - 62; http://dx.doi.org/10.7150/ijbs.3157; PMID: 22393307
  • Zhang H, Erickson-Johnson M, Wang X, Bahrami A, Medeiros F, Lonzo ML, et al. Malignant high-grade histological transformation of inflammatory myofibroblastic tumour associated with amplification of TPM3-ALK. J Clin Pathol 2010; 63:1040 - 1; http://dx.doi.org/10.1136/jcp.2010.080705; PMID: 20870660
  • Lamant L, Dastugue N, Pulford K, Delsol G, Mariamé B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93:3088 - 95; PMID: 10216106
  • Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 1995; 28:15 - 24; http://dx.doi.org/10.1006/geno.1995.1100; PMID: 7590742
  • Lam CY, Yip CW, Poon TC, Cheng CK, Ng EW, Wong NC, et al. Identification and characterization of tropomyosin 3 associated with granulin-epithelin precursor in human hepatocellular carcinoma. PLoS One 2012; 7:e40324; http://dx.doi.org/10.1371/journal.pone.0040324; PMID: 22792281
  • Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001; 292:929 - 34; http://dx.doi.org/10.1126/science.292.5518.929; PMID: 11340206
  • Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5:396 - 400; http://dx.doi.org/10.1038/nrg1328; PMID: 15143321
  • Osman A. MicroRNAs in health and disease--basic science and clinical applications. Clin Lab 2012; 58:393 - 402; PMID: 22783567
  • Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics 2010; 11:537 - 61; http://dx.doi.org/10.2174/138920210793175895; PMID: 21532838
  • Ma L, Weinberg RA. Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 2008; 24:448 - 56; http://dx.doi.org/10.1016/j.tig.2008.06.004; PMID: 18674843
  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008; 10:202 - 10; http://dx.doi.org/10.1038/ncb1681; PMID: 18193036
  • Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 2007; 72:397 - 402; http://dx.doi.org/10.1159/000113489; PMID: 18196926
  • Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol 2011; 38:1093 - 101; PMID: 21258769
  • Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, et al. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 2010; 127:2804 - 14; http://dx.doi.org/10.1002/ijc.25284; PMID: 21351259
  • Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer 2010; 102:883 - 91; http://dx.doi.org/10.1038/sj.bjc.6605570; PMID: 20160723
  • Xu B, Niu X, Zhang X, Tao J, Wu D, Wang Z, et al. miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem 2011; 350:207 - 13; http://dx.doi.org/10.1007/s11010-010-0700-6; PMID: 21197560
  • Suzuki S, Yokobori T, Tanaka N, Sakai M, Sano A, Inose T, et al. CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2012; 28:465 - 72; PMID: 22641236
  • Lippi G, Steinert JR, Marczylo EL, D’Oro S, Fiore R, Forsythe ID, et al. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J Cell Biol 2011; 194:889 - 904; http://dx.doi.org/10.1083/jcb.201103006; PMID: 21930776
  • Cao J, Shen Y, Zhu L, Xu Y, Zhou Y, Wu Z, et al. miR-129-3p controls cilia assembly by regulating CP110 and actin dynamics. Nat Cell Biol 2012; 14:697 - 706; http://dx.doi.org/10.1038/ncb2512; PMID: 22684256
  • Tsai KW, Wu CW, Hu LY, Li SC, Liao YL, Lai CH, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011; 129:2600 - 10; http://dx.doi.org/10.1002/ijc.25919; PMID: 21960261
  • Laurila E, Savinainen K, Kuuselo R, Karhu R, Kallioniemi A. Characterization of the 7q21-q22 amplicon identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator of cell migration and invasion in pancreatic cancer. Genes Chromosomes Cancer 2009; 48:330 - 9; http://dx.doi.org/10.1002/gcc.20643; PMID: 19145645
  • Sossey-Alaoui K, Bialkowska K, Plow EF. The miR200 family of microRNAs regulates WAVE3-dependent cancer cell invasion. J Biol Chem 2009; 284:33019 - 29; http://dx.doi.org/10.1074/jbc.M109.034553; PMID: 19801681
  • Sossey-Alaoui K, Downs-Kelly E, Das M, Izem L, Tubbs R, Plow EF. WAVE3, an actin remodeling protein, is regulated by the metastasis suppressor microRNA, miR-31, during the invasion-metastasis cascade. Int J Cancer 2011; 129:1331 - 43; http://dx.doi.org/10.1002/ijc.25793; PMID: 21105030
  • Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Laé M, et al. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res 2007; 67:6844 - 53; http://dx.doi.org/10.1158/0008-5472.CAN-07-0929; PMID: 17638895
  • Jawhari AU, Buda A, Jenkins M, Shehzad K, Sarraf C, Noda M, et al. Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro. Am J Pathol 2003; 162:69 - 80; http://dx.doi.org/10.1016/S0002-9440(10)63799-6; PMID: 12507891
  • Onodera M, Zen Y, Harada K, Sato Y, Ikeda H, Itatsu K, et al. Fascin is involved in tumor necrosis factor-alpha-dependent production of MMP9 in cholangiocarcinoma. Lab Invest 2009; 89:1261 - 74; http://dx.doi.org/10.1038/labinvest.2009.89; PMID: 19721413
  • Guvakova MA, Boettiger D, Adams JC. Induction of fascin spikes in breast cancer cells by activation of the insulin-like growth factor-I receptor. Int J Biochem Cell Biol 2002; 34:685 - 98; http://dx.doi.org/10.1016/S1357-2725(01)00160-1; PMID: 11943599
  • Liu R, Liao J, Yang M, Sheng J, Yang H, Wang Y, et al. The cluster of miR-143 and miR-145 affects the risk for esophageal squamous cell carcinoma through co-regulating fascin homolog 1. PLoS One 2012; 7:e33987; http://dx.doi.org/10.1371/journal.pone.0033987; PMID: 22457808
  • Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 2010; 29:6569 - 80; http://dx.doi.org/10.1038/onc.2010.386; PMID: 20818426
  • Kim SJ, Oh JS, Shin JY, Lee KD, Sung KW, Nam SJ, et al. Development of microRNA-145 for therapeutic application in breast cancer. J Control Release 2011; 155:427 - 34; http://dx.doi.org/10.1016/j.jconrel.2011.06.026; PMID: 21723890
  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18:350 - 9; http://dx.doi.org/10.1038/cr.2008.24; PMID: 18270520
  • Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007; 282:14328 - 36; http://dx.doi.org/10.1074/jbc.M611393200; PMID: 17363372
  • Kislauskis EH, Zhu X, Singer RH. beta-Actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol 1997; 136:1263 - 70; http://dx.doi.org/10.1083/jcb.136.6.1263; PMID: 9087442
  • Shestakova EA, Singer RH, Condeelis J. The physiological significance of beta -actin mRNA localization in determining cell polarity and directional motility. Proc Natl Acad Sci U S A 2001; 98:7045 - 50; http://dx.doi.org/10.1073/pnas.121146098; PMID: 11416185
  • Mingle LA, Okuhama NN, Shi J, Singer RH, Condeelis J, Liu G. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J Cell Sci 2005; 118:2425 - 33; http://dx.doi.org/10.1242/jcs.02371; PMID: 15923655
  • Liao G, Simone B, Liu G. Mis-localization of Arp2 mRNA impairs persistence of directional cell migration. Exp Cell Res 2011; 317:812 - 22; http://dx.doi.org/10.1016/j.yexcr.2010.12.002; PMID: 21146522
  • Gu W, Katz Z, Wu B, Park HY, Li D, Lin S, et al. Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci 2012; 125:81 - 91; http://dx.doi.org/10.1242/jcs.086132; PMID: 22266909
  • Ross AF, Oleynikov Y, Kislauskis EH, Taneja KL, Singer RH. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol 1997; 17:2158 - 65; PMID: 9121465
  • Condeelis J, Singer RH. How and why does beta-actin mRNA target?. Biol Cell 2005; 97:97 - 110; http://dx.doi.org/10.1042/BC20040063; PMID: 15601261
  • Gu W, Pan F, Singer RH. Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci 2009; 122:1895 - 905; http://dx.doi.org/10.1242/jcs.045278; PMID: 19461076
  • Liu G, Grant WM, Persky D, Latham VM Jr., Singer RH, Condeelis J. Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell 2002; 13:579 - 92; http://dx.doi.org/10.1091/mbc.01-03-0140; PMID: 11854414
  • Gross SR, Kinzy TG. Translation elongation factor 1A is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 2005; 12:772 - 8; http://dx.doi.org/10.1038/nsmb979; PMID: 16116436
  • Gross SR, Kinzy TG. Improper organization of the actin cytoskeleton affects protein synthesis at initiation. Mol Cell Biol 2007; 27:1974 - 89; http://dx.doi.org/10.1128/MCB.00832-06; PMID: 17178834
  • Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, et al. Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci 1996; 109:2705 - 14; PMID: 8937988
  • Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 2002; 31:301 - 5; PMID: 12053177
  • Jeganathan S, Morrow A, Amiri A, Lee JM. Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Mol Cell Biol 2008; 28:4549 - 61; http://dx.doi.org/10.1128/MCB.00150-08; PMID: 18474610
  • Pinke DE, Lee JM. The lipid kinase PI4KIIIβ and the eEF1A2 oncogene co-operate to disrupt three-dimensional in vitro acinar morphogenesis. Exp Cell Res 2011; 317:2503 - 11; http://dx.doi.org/10.1016/j.yexcr.2011.08.002; PMID: 21851817
  • Leclercq TM, Moretti PA, Pitson SM. Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 2011; 30:372 - 8; http://dx.doi.org/10.1038/onc.2010.420; PMID: 20838377
  • Kim J, Namkung W, Yoon JS, Jo MJ, Lee SH, Kim KH, et al. The role of translation elongation factor eEF1A in intracellular alkalinization-induced tumor cell growth. Lab Invest 2009; 89:867 - 74; http://dx.doi.org/10.1038/labinvest.2009.53; PMID: 19506553
  • Lamberti A, Caraglia M, Longo O, Marra M, Abbruzzese A, Arcari P. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: review article. Amino Acids 2004; 26:443 - 8; http://dx.doi.org/10.1007/s00726-004-0088-2; PMID: 15290352
  • Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Hüttelmaier S, Zavadil J, et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res 2002; 62:6278 - 88; PMID: 12414658
  • Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A 2009; 106:20318 - 23; http://dx.doi.org/10.1073/pnas.0910962106; PMID: 19915148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.