1,366
Views
25
CrossRef citations to date
0
Altmetric
Commentary

E3 ubiquitin ligases in regulating stress fiber, lamellipodium, and focal adhesion dynamics

&
Pages 49-54 | Received 08 Oct 2013, Accepted 10 Dec 2013, Published online: 01 Jan 2013

References

  • Finley D, Chau V. Ubiquitination. Annu Rev Cell Biol 1991; 7:25 - 69; http://dx.doi.org/10.1146/annurev.cb.07.110191.000325; PMID: 1667082
  • Pickart CM. Ubiquitin in chains. Trends Biochem Sci 2000; 25:544 - 8; http://dx.doi.org/10.1016/S0968-0004(00)01681-9; PMID: 11084366
  • Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 2004; 16:119 - 26; http://dx.doi.org/10.1016/j.ceb.2004.02.005; PMID: 15196553
  • Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503 - 33; http://dx.doi.org/10.1146/annurev.biochem.70.1.503; PMID: 11395416
  • Lee J, Ishihara A, Jacobson K. How do cells move along surfaces?. Trends Cell Biol 1993; 3:366 - 70; http://dx.doi.org/10.1016/0962-8924(93)90084-E; PMID: 14731652
  • Huang C. Roles of E3 ubiquitin ligases in cell adhesion and migration. Cell Adh Migr 2010; 4:10 - 8; http://dx.doi.org/10.4161/cam.4.1.9834; PMID: 20009572
  • Schoenwaelder SM, Burridge K. Bidirectional signaling between the cytoskeleton and integrins. Curr Opin Cell Biol 1999; 11:274 - 86; http://dx.doi.org/10.1016/S0955-0674(99)80037-4; PMID: 10209151
  • Tojkander S, Gateva G, Lappalainen P. Actin stress fibers--assembly, dynamics and biological roles. J Cell Sci 2012; 125:1855 - 64; http://dx.doi.org/10.1242/jcs.098087; PMID: 22544950
  • Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 2002; 16:1195 - 204; http://dx.doi.org/10.1096/fj.02-0038com; PMID: 12153987
  • Mizutani T, Haga H, Koyama Y, Takahashi M, Kawabata K. Diphosphorylation of the myosin regulatory light chain enhances the tension acting on stress fibers in fibroblasts. J Cell Physiol 2006; 209:726 - 31; http://dx.doi.org/10.1002/jcp.20773; PMID: 16924661
  • Nagayama M, Haga H, Kawabata K. Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts. Cell Motil Cytoskeleton 2001; 50:173 - 9; http://dx.doi.org/10.1002/cm.10008; PMID: 11807938
  • Nakamura F, Stossel TP, Hartwig JH. The filamins: organizers of cell structure and function. Cell Adh Migr 2011; 5:160 - 9; http://dx.doi.org/10.4161/cam.5.2.14401; PMID: 21169733
  • Nakamura F, Osborn TM, Hartemink CA, Hartwig JH, Stossel TP. Structural basis of filamin A functions. J Cell Biol 2007; 179:1011 - 25; http://dx.doi.org/10.1083/jcb.200707073; PMID: 18056414
  • Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A 2006; 103:1762 - 7; http://dx.doi.org/10.1073/pnas.0504777103; PMID: 16446458
  • Xu Y, Bismar TA, Su J, Xu B, Kristiansen G, Varga Z, Teng L, Ingber DE, Mammoto A, Kumar R, et al. Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J Exp Med 2010; 207:2421 - 37; http://dx.doi.org/10.1084/jem.20100433; PMID: 20937704
  • Kiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA. The molecular basis of filamin binding to integrins and competition with talin. Mol Cell 2006; 21:337 - 47; http://dx.doi.org/10.1016/j.molcel.2006.01.011; PMID: 16455489
  • Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302:1775 - 9; http://dx.doi.org/10.1126/science.1090772; PMID: 14657501
  • Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell 2009; 35:841 - 55; http://dx.doi.org/10.1016/j.molcel.2009.09.004; PMID: 19782033
  • Lamsoul I, Métais A, Gouot E, Heuzé ML, Lennon-Duménil A-M, Moog-Lutz C, Lutz PG. ASB2α regulates migration of immature dendritic cells. Blood 2013; 122:533 - 41; http://dx.doi.org/10.1182/blood-2012-11-466649; PMID: 23632887
  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science 2003; 302:1704 - 9; http://dx.doi.org/10.1126/science.1092053; PMID: 14657486
  • Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999; 400:687 - 93; http://dx.doi.org/10.1038/23293; PMID: 10458166
  • Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD, Pollack JR. SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 2011; 6:e23924; http://dx.doi.org/10.1371/journal.pone.0023924; PMID: 21887346
  • Cui Y, He S, Xing C, Lu K, Wang J, Xing G, Meng A, Jia S, He F, Zhang L. SCFFBXL¹⁵ regulates BMP signalling by directing the degradation of HECT-type ubiquitin ligase Smurf1. EMBO J 2011; 30:2675 - 89; http://dx.doi.org/10.1038/emboj.2011.155; PMID: 21572392
  • Xie Y, Avello M, Schirle M, McWhinnie E, Feng Y, Bric-Furlong E, Wilson C, Nathans R, Zhang J, Kirschner MW, et al. Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem 2013; 288:2976 - 85; http://dx.doi.org/10.1074/jbc.M112.430066; PMID: 23184937
  • Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol 2009; 11:624 - 30; http://dx.doi.org/10.1038/ncb1868; PMID: 19363486
  • Yamaguchi K, Ohara O, Ando A, Nagase T. Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway. Biol Chem 2008; 389:405 - 13; http://dx.doi.org/10.1515/BC.2008.036; PMID: 18208356
  • Sapkota G, Alarcón C, Spagnoli FM, Brivanlou AH, Massagué J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 2007; 25:441 - 54; http://dx.doi.org/10.1016/j.molcel.2007.01.006; PMID: 17289590
  • Ying SX, Hussain ZJ, Zhang YE. Smurf1 facilitates myogenic differentiation and antagonizes the bone morphogenetic protein-2-induced osteoblast conversion by targeting Smad5 for degradation. J Biol Chem 2003; 278:39029 - 36; http://dx.doi.org/10.1074/jbc.M301193200; PMID: 12871975
  • Shen R, Chen M, Wang YJ, Kaneki H, Xing L, O’keefe RJ, Chen D. Smad6 interacts with Runx2 and mediates Smad ubiquitin regulatory factor 1-induced Runx2 degradation. J Biol Chem 2006; 281:3569 - 76; http://dx.doi.org/10.1074/jbc.M506761200; PMID: 16299379
  • Fei C, Li Z, Li C, Chen Y, Chen Z, He X, Mao L, Wang X, Zeng R, Li L. Smurf1-mediated Lys29-linked nonproteolytic polyubiquitination of axin negatively regulates Wnt/β-catenin signaling. Mol Cell Biol 2013; 33:4095 - 105; http://dx.doi.org/10.1128/MCB.00418-13; PMID: 23959799
  • Crose LES, Hilder TL, Sciaky N, Johnson GL. Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 2009; 284:13301 - 5; http://dx.doi.org/10.1074/jbc.C900009200; PMID: 19318350
  • Wan L, Zou W, Gao D, Inuzuka H, Fukushima H, Berg AH, Drapp R, Shaik S, Hu D, Lester C, et al. Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. Mol Cell 2011; 44:721 - 33; http://dx.doi.org/10.1016/j.molcel.2011.09.024; PMID: 22152476
  • Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat Cell Biol 2008; 10:994 - 1002; http://dx.doi.org/10.1038/ncb1760; PMID: 18641638
  • Ito I, Hanyu A, Wayama M, Goto N, Katsuno Y, Kawasaki S, Nakajima Y, Kajiro M, Komatsu Y, Fujimura A, et al. Estrogen inhibits transforming growth factor β signaling by promoting Smad2/3 degradation. J Biol Chem 2010; 285:14747 - 55; http://dx.doi.org/10.1074/jbc.M109.093039; PMID: 20207742
  • Cheng PL, Lu H, Shelly M, Gao H, Poo MM. Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 2011; 69:231 - 43; http://dx.doi.org/10.1016/j.neuron.2010.12.021; PMID: 21262463
  • Ridley AJ. Life at the leading edge. Cell 2011; 145:1012 - 22; http://dx.doi.org/10.1016/j.cell.2011.06.010; PMID: 21703446
  • Torrino S, Visvikis O, Doye A, Boyer L, Stefani C, Munro P, Bertoglio J, Gacon G, Mettouchi A, Lemichez E. The E3 ubiquitin-ligase HACE1 catalyzes the ubiquitylation of active Rac1. Dev Cell 2011; 21:959 - 65; http://dx.doi.org/10.1016/j.devcel.2011.08.015; PMID: 22036506
  • Castillo-Lluva S, Tan CT, Daugaard M, Sorensen PHB, Malliri A. The tumour suppressor HACE1 controls cell migration by regulating Rac1 degradation. Oncogene 2013; 32:1735 - 42; http://dx.doi.org/10.1038/onc.2012.189; PMID: 22614015
  • Oberoi TK, Dogan T, Hocking JC, Scholz R-P, Mooz J, Anderson CL, Karreman C, Meyer zu Heringdorf D, Schmidt G, Ruonala M, et al. IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO J 2012; 31:14 - 28; http://dx.doi.org/10.1038/emboj.2011.423; PMID: 22117219
  • Zhao J, Mialki RK, Wei J, Coon TA, Zou C, Chen BB, Mallampalli RK, Zhao Y. SCF E3 ligase F-box protein complex SCF(FBXL19) regulates cell migration by mediating Rac1 ubiquitination and degradation. FASEB J 2013; 27:2611 - 9; http://dx.doi.org/10.1096/fj.12-223099; PMID: 23512198
  • Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT, Malliri A. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol 2010; 12:1078 - 85; http://dx.doi.org/10.1038/ncb2112; PMID: 20935639
  • Wang X, Jin C, Tang Y, Tang L-Y, Zhang YE. Ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) by Smad ubiquitination regulatory factor 1 (Smurf1) regulates motility of breast epithelial and cancer cells. J Biol Chem 2013; 288:21784 - 92; http://dx.doi.org/10.1074/jbc.M113.472704; PMID: 23760265
  • Zhang L, Anglesio MS, O’Sullivan M, Zhang F, Yang G, Sarao R, Mai PN, Cronin S, Hara H, Melnyk N, et al. The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med 2007; 13:1060 - 9; http://dx.doi.org/10.1038/nm1621; PMID: 17694067
  • Anglesio MS, Evdokimova V, Melnyk N, Zhang L, Fernandez CV, Grundy PE, Leach S, Marra MA, Brooks-Wilson AR, Penninger J, et al. Differential expression of a novel ankyrin containing E3 ubiquitin-protein ligase, Hace1, in sporadic Wilms’ tumor versus normal kidney. Hum Mol Genet 2004; 13:2061 - 74; http://dx.doi.org/10.1093/hmg/ddh215; PMID: 15254018
  • Daugaard M, Nitsch R, Razaghi B, McDonald L, Jarrar A, Torrino S, Castillo-Lluva S, Rotblat B, Li L, Malliri A, et al. Hace1 controls ROS generation of vertebrate Rac1-dependent NADPH oxidase complexes. Nat Commun 2013; 4:2180; http://dx.doi.org/10.1038/ncomms3180; PMID: 23864022
  • Galbán S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ 2010; 17:54 - 60; http://dx.doi.org/10.1038/cdd.2009.81; PMID: 19590513
  • Liu J, Zhang D, Luo W, Yu Y, Yu J, Li J, Zhang X, Zhang B, Chen J, Wu X-R, et al. X-linked inhibitor of apoptosis protein (XIAP) mediates cancer cell motility via Rho GDP dissociation inhibitor (RhoGDI)-dependent regulation of the cytoskeleton. J Biol Chem 2011; 286:15630 - 40; http://dx.doi.org/10.1074/jbc.M110.176982; PMID: 21402697
  • Jia L, Sun Y. SCF E3 ubiquitin ligases as anticancer targets. Curr Cancer Drug Targets 2011; 11:347 - 56; http://dx.doi.org/10.2174/156800911794519734; PMID: 21247385
  • Kedinger V, Rio M-C. TRAF4, the Unique Family Member. In: Wu H, ed. TNF Receptor Associated Factors (TRAFs): Springer New York, 2007:60-71.
  • Wu RF, Xu YC, Ma Z, Nwariaku FE, Sarosi GA Jr., Terada LS. Subcellular targeting of oxidants during endothelial cell migration. J Cell Biol 2005; 171:893 - 904; http://dx.doi.org/10.1083/jcb.200507004; PMID: 16330715
  • Webb DJ, Parsons JT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again. Nat Cell Biol 2002; 4:E97 - 100; http://dx.doi.org/10.1038/ncb0402-e97; PMID: 11944043
  • Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, Ginsberg MH, Calderwood DA. Talin binding to integrin β tails: a final common step in integrin activation. Science 2003; 302:103 - 6; http://dx.doi.org/10.1126/science.1086652; PMID: 14526080
  • Nuckolls GH, Turner CE, Burridge K. Functional studies of the domains of talin. J Cell Biol 1990; 110:1635 - 44; http://dx.doi.org/10.1083/jcb.110.5.1635; PMID: 2110569
  • Calderwood DA, Zent R, Grant R, Rees DJG, Hynes RO, Ginsberg MH. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J Biol Chem 1999; 274:28071 - 4; http://dx.doi.org/10.1074/jbc.274.40.28071; PMID: 10497155
  • Wu Z, Li X, Sunkara M, Spearman H, Morris AJ, Huang C. PIPKIγ regulates focal adhesion dynamics and colon cancer cell invasion. PLoS One 2011; 6:e24775; http://dx.doi.org/10.1371/journal.pone.0024775; PMID: 21931851
  • Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. Nature 2002; 420:85 - 9; http://dx.doi.org/10.1038/nature01147; PMID: 12422219
  • Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420:89 - 93; http://dx.doi.org/10.1038/nature01082; PMID: 12422220
  • Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, Huttenlocher A. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol 2004; 6:977 - 83; http://dx.doi.org/10.1038/ncb1175; PMID: 15448700
  • Li X, Zhou Q, Sunkara M, Kutys ML, Wu Z, Rychahou P, Morris AJ, Zhu H, Evers BM, Huang C. Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I γ by HECTD1 regulates focal adhesion dynamics and cell migration. J Cell Sci 2013; 126:2617 - 28; http://dx.doi.org/10.1242/jcs.117044; PMID: 23572508
  • Brunetti-Pierri N, Paciorkowski AR, Ciccone R, Della Mina E, Bonaglia MC, Borgatti R, Schaaf CP, Sutton VR, Xia Z, Jelluma N, et al. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet 2011; 19:102 - 7; http://dx.doi.org/10.1038/ejhg.2010.142; PMID: 20736978
  • Sarkar AA, Zohn IE. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme. J Cell Biol 2012; 196:789 - 800; http://dx.doi.org/10.1083/jcb.201105101; PMID: 22431752
  • Zheng Q, Li X, Sunkara M, Morris AJ, Wu W, Huang C. Leptin Up-Regulates HECTD1 to Promote Phosphoinositide Metabolism and Cell Migration and Invasion in Breast Cancer Cells. J Pharmacol Clin Toxicol 2013; 1:1001
  • Zohn IE, Anderson KV, Niswander L. The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure. Dev Biol 2007; 306:208 - 21; http://dx.doi.org/10.1016/j.ydbio.2007.03.018; PMID: 17442300