631
Views
15
CrossRef citations to date
0
Altmetric
COMMENTARY

Multiwalled carbon nanotubes enhance human bone marrow mesenchymal stem cells’ spreading but delay their proliferation in the direction of differentiation acceleration

Pages 558-562 | Received 30 Sep 2013, Accepted 24 Jul 2014, Published online: 26 Jan 2015

References

  • Khang D, Park GE, Webster TJ. Enhanced chondrocyte densities on carbon nanotube composites: the combined role of nanosurface roughness and electrical stimulation. J Biomed Mater Res A 2008; 86(1):253-60; PMID:18186050; http://dx.doi.org/10.1002/jbm.a.31803
  • Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 2000; 14(3):175-82; PMID:10984193; http://dx.doi.org/10.1385/JMN:14:3:175
  • Zanello LP, Zhao Bin, Hu Hui, and Haddon Robert C. Bone Cell Proliferation on Carbon Nanotubes. NanoLetters 2006; 6:562-7; PMID:16522063; http://dx.doi.org/10.1021/nl051861e
  • Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, Cui FZ, Watari F. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 2012; 33:4818-27; PMID:22483242; http://dx.doi.org/10.1016/j.biomaterials.2012.03.045
  • Aoki N, Akasaka T, Watari F, and Yokoyama A. Carbon nanotubes as scaffolds for cell culture and effect on cellular function. Dent Mater J 2007; 26(2):178-85; PMID:17621932; http://dx.doi.org/10.4012/dmj.26.178
  • Zhang D, Yi C, Zhang J, Chen Y, Yao X, and Yang M. Effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts. Nanotechnology 2007; 18:475102-10; http://dx.doi.org/10.1088/0957-4484/18/47/475102
  • Tutak W, Park KH, Vasilov A, Starovoytov V, Fanchini G, Cai SQ, Partridge NC, Sesti F, Chhowalla M. Toxicity induced enhanced extracellular matrix production in osteoblastic cells cultured on single-walled carbon nanotube networks. Nanotechnology 2009; 20:255101; PMID:19487801; http://dx.doi.org/10.1088/0957-4484/20/25/255101
  • George JH, Shaffer MS, and Stevens MM. Investigating the cellular response to nanofibrous materials by use of a multi-walled carbon nanotube model. J Exp Nanosci 2006; 1(1):1-12; http://dx.doi.org/10.1080/17458080500463149
  • Ishikawa K, Akasaka T, Yawaka Y, Watari F. High functional expression of osteoblasts on imogolite, aluminosilicate nanotubes. J Biomed Nanotechnology 2010; 6:59-65; PMID: 20499833; http://dx.doi.org/10.1166/jbn.2010.1092
  • 10. Akasaka T, Yokoyama A, Matsuoka M, et al. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets. Biomed Mater Eng 2009; 19:147-53; PMID:19581708; http://dx.doi.org/10.3233/BME-2009-0574
  • Kilpadi KL, Sawyer AA, Prince CW, Chang PL, and Bellis SL. Primary human marrow stromal cells and SaOs-2 osteosarcoma cells use different mechanisms to adhere to hydroxylapatite. J Biomed Mater Res A 2004; 68A:273-85 PMID:14704969
  • Kroustalli AA, Kourkouli SN, Deligianni DD. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes. Ann Biomed Eng 2013; 41(12):2655-65; PMID:23820769; http://dx.doi.org/10.1007/s10439-013-0860-0
  • Klein MO, Bijelic A, Ziebart T, Koch F, Kämmerer PW, Wieland M, Konerding MA, Al-Nawas B. Scale-Structured Hydrophilic Titanium Surfaces Promote Early Osteogenic Gene Response for Cell Adhesion and Cell Differentiation. Clin Implant Dent Rel Res 2011; 15(2):166-75; PMID: 21682843; http://dx.doi.org/10.1111/j.1708-8208.2011.00339.x
  • Boyan BD, Lossdörfer S, Wang L, Zhao G, Lohmann CH, Cochran DL and Schwartz Z. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. European cells and Materials 2003; 6:22-7; PMID:14577052
  • Khang D, Choi J, Im Y-M, Kim Y-J, Jang J-H, Kang S S, Nam T-H, Song J and Park J-W. Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials 2012; 33:5997-6007; PMID:22632766; http://dx.doi.org/10.1016/j.biomaterials.2012.05.005
  • Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, Schwartz Z, Sandhage KH, Boyan BD. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials 2012; 33:8986-94; PMID:22989383; http://dx.doi.org/10.1016/j.biomaterials.2012.08.059
  • Schofer MD, Veltum A, Theisen C, Chen F, Agarwal S, Fuchs-Winkelmann S, Paletta JRJ. Functionalisation of PLLA nanofiber scaffolds using a possible cooperative effect between collagen type I and BMP-2: impact on growth and osteogenic differentiation of human mesenchymal stem cells. J Mater Sci Mater Med 2011; 22:1753-62; PMID:21604139; http://dx.doi.org/10.1007/s10856-011-4341-4
  • Chang J-C, Fujita S, Tonami H, Kato K, Iwata H and Hsu S. Cell orientation and regulation of cell–cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed Mater 2013; 8:055002; PMID:24002690; http://dx.doi.org/10.1088/1748-6041/8/5/055002
  • Oh S, Brammer KS, Julie Li YS, Teng D, Engler AJ, Chien S, and Jin S. Stem cell fate dictated solely by altered nanotube dimension. PNAS 2009; 106: 2130-35; PMID:19179282; http://dx.doi.org/10.1073/pnas.0813200106
  • Knabe C, Stiller M, Berger G, Reif D, Gildenhaar R, Howlett CR, Zreiqat H. The effect of bioactive glass ceramics on the expression of bone-related genes and proteins in vitro. Clin Oral Impl Res 2005; 16:119-27; PMID:15642039; http://dx.doi.org/10.1111/j.1600-0501.2004.01066.x
  • Lian JB and Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. Iowa Orthop J 1995; 15:118-40; PMID:7634023
  • McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and rhoA regulate stem cell lineage commitment. Dev Cell 2004; 6:483-95; PMID:15068789; http://dx.doi.org/10.1016/S1534-5807(04)00075-9
  • Linez-Bataillon P, Monchau F, Bigerelle M, Hildebrand HF. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6Al4V substrates. Biomol Eng 2002; 19:133-41; PMID:12202174; http://dx.doi.org/10.1016/S1389-0344(02)00024-2
  • Brunette DM. The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 1988; 3:231-46; PMID:3075965
  • Zhao G, Raines AL, Wieland M, Schwartz Z, and Boyan BD. Requirement for Both Micron and Submicron Scale Structure for Synergistic Responses of Osteoblasts to Substrate Surface Energy and Topography. Biomaterials 2007; 28: 2821-29; PMID:17368532; http://dx.doi.org/10.1016/j.biomaterials.2007.02.024
  • Born AK, Rottmar M, Lischer S, Pleskova M, Bruinink A, and Maniura-Weber K. Correlating cell architecture with osteogenesis: first steps towards live single cell monitoring. European Cells and Materials 2009; 18:49-62; PMID:19856264
  • Yourek G, Hussain MA, Mao JJ. Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J 2007; 53:219-28; PMID:17413564; http://dx.doi.org/10.1097/MAT.0b013e31802deb2d
  • Boettiger D. Mechanical control of integrin-mediated adhesion and signaling. Current Opinion in Cell Biology 2012; 24:592-599; PMID:22857903; http://dx.doi.org/10.1016/j.ceb.2012.07.002
  • Teo BK, Wong ST, Lim CK, Kung TY, Yap CH, Ramagopal Y, Romer LH, Yim EK. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 2013; 7:4785-98; PMID:23672596; http://dx.doi.org/10.1021/nn304966z
  • Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol 2007; 213:565-73; PMID:17680633; http://dx.doi.org/10.1002/jcp.21237
  • Huttenlocher A, Sandborg RR and Horwitz AF. Adhesion in cell migration, Current Opinion in Cell Biology 1995; 7:697-706; PMID:8573345; http://dx.doi.org/10.1016/0955-0674(95)80112-X
  • Hwang NS, Varghese S and Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev 2008; 60:199-214; PMID:18006108; http://dx.doi.org/10.1016/j.addr.2007.08.036
  • Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 2010; 272:11-6; PMID:20371264; http://dx.doi.org/10.1016/j.tox.2010.03.017
  • Firme CP 3rd, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 2010; 6:245-256; PMID:19699321; http://dx.doi.org/10.1016/j.nano.2009.07.003
  • Tsukahara T, Haniu H. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells. Mol Cell Biochem 2011; 352:57-63; PMID:21298324; http://dx.doi.org/10.1007/s11010-011-0739-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.