1,078
Views
36
CrossRef citations to date
0
Altmetric
Special Focus: Collective Cell Migration

Cell-cell signaling interactions coordinate multiple cell behaviors that drive morphogenesis of the lateral line

&
Pages 499-508 | Received 12 Aug 2011, Accepted 19 Dec 2011, Published online: 01 Nov 2011

References

  • Aman A, Piotrowski T. Cell migration during morphogenesis. Dev Biol 2010; 341:20 - 33; PMID: 19914236; http://dx.doi.org/10.1016/j.ydbio.2009.11.014
  • Stone LS. Experiments on the development of the cranial ganglia and the lateral line sense organs in Amblystoma punctatum. J Exp Zool 1922; 35:420 - 496; http://dx.doi.org/10.1002/jez.1400350403
  • Metcalfe WK, Kimmel CB, Schabtach E. Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 1985; 233:377 - 389; PMID: 3980776; http://dx.doi.org/10.1002/cne.902330307
  • Nicolson T. The genetics of hearing and balance in zebrafish. Annu Rev Genet 2005; 39:9 - 22; PMID: 16285850; http://dx.doi.org/10.1146/annurev.genet.39.073003.105049
  • Webb JF. Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 1989; 33:205 - 222; PMID: 2655823
  • Gompel N, Cubedo N, Thisse C, Thisse B, Dambly-Chaudiere C, Ghysen A. Pattern formation in the lateral line of zebrafish. Mech Dev 2001; 105:69 - 77; PMID: 11429283; http://dx.doi.org/10.1016/S0925-4773(01)00382-3
  • Sapède D, Gompel N, Dambly-Chaudiere C, Ghysen A. Cell migration in the postembryonic development of the fish lateral line. Development 2002; 129:605 - 615; PMID: 11830562
  • Grant KA, Raible DW, Piotrowski T. Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron 2005; 45:69 - 80; PMID: 15629703; http://dx.doi.org/10.1016/j.neuron.2004.12.020
  • Nuñez VA, Sarrazin AF, Cubedo N, Allende ML, Dambly-Chaudière C, Ghysen A. Postembryonic development of the posterior lateral line in the zebrafish. Evol Dev 2009; 11:391 - 404; PMID: 19601973; http://dx.doi.org/10.1111/j.1525-142X.2009.00346.x
  • Ghysen A, Dambly-Chaudiere C. Development of the zebrafish lateral line. Curr Opin Neurobiol 2004; 14:67 - 73; PMID: 15018940; http://dx.doi.org/10.1016/j.conb.2004.01.012
  • Ghysen A, Dambly-Chaudière C. The three-sided romance of the lateral line: Glia love axons love precursors love glia. Bioessays 2005; 27:488 - 494; PMID: 15832385; http://dx.doi.org/10.1002/bies.20225
  • Dambly-Chaudière C, Sapède D, Soubiran F, Decorde K, Gompel N, Ghysen A. The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell 2003; 95:579 - 587; PMID: 14720460; http://dx.doi.org/10.1016/j.biolcel.2003.10.005
  • Platt J. Ontogenetic differentiations of the ectoderm in Necturus. Anat Anz 1894; 8:51 - 56
  • Bailey SW. An experimental study of the origin of lateral-line structures in embryonic and adult teleosts. J Exp Zool 1937; 76:187 - 233; http://dx.doi.org/10.1002/jez.1400760203
  • Northcutt RG, Catania KC, Criley BB. Development of lateral line organs in the axolotl. J Comp Neurol 1994; 340:480 - 514; PMID: 8006214; http://dx.doi.org/10.1002/cne.903400404
  • Haas P, Gilmour D. Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 2006; 10:673 - 680; PMID: 16678780; http://dx.doi.org/10.1016/j.devcel.2006.02.019
  • Aman A, Piotrowski T. Wnt/β-catenin and fgf signaling control collective cell migration by restricting chemokine receptor expression. Dev Cell 2008; 15:749 - 761; PMID: 19000839; http://dx.doi.org/10.1016/j.devcel.2008.10.002
  • Gamba L, Cubedo N, Ghysen A, Lutfalla G, Dambly-Chaudiere C. Estrogen receptor ESR1 controls cell migration by repressing chemokine receptor CXCR4 in the zebrafish posterior lateral line system. Proc Natl Acad Sci USA 2010; 107:6358 - 6363; PMID: 20308561; http://dx.doi.org/10.1073/pnas.0909998107
  • Itoh M, Chitnis AB. Expression of proneural and neurogenic genes in the zebrafish lateral line primordium correlates with selection of hair cell fate in neuromasts. Mech Dev 2001; 102:263 - 266; PMID: 11287207; http://dx.doi.org/10.1016/S0925-4773(01)00308-2
  • Matsuda M, Chitnis AB. Atoh1a expression must be restricted by Notch signaling for effective morphogenesis of the posterior lateral line primordium in zebrafish. Development 2010; 137:3477 - 3487; PMID: 20876657; http://dx.doi.org/10.1242/dev.052761
  • Nechiporuk A, Raible DW. FGF-dependent mechanosensory organ patterning in zebrafish. Science 2008; 320:1774 - 1777; PMID: 18583612; http://dx.doi.org/10.1126/science.1156547
  • Lecaudey V, Cakan-Akdogan G, Norton WHJ, Gilmour D. Dynamic Fgf signaling couples morphogenesis and migration in the zebrafish lateral line primordium. Development 2008; 135:2695 - 2705; PMID: 18599504; http://dx.doi.org/10.1242/dev.025981
  • Perlin JR, Talbot WS. Signals on the move: Chemokine receptors and organogenesis in zebrafish. Sci STKE 2007; 2007:45
  • Aman A, Piotrowski T. Multiple signaling interactions coordinate collective cell migration of the posterior lateral line primordium. Cell Adh Migr 2009; 3:365 - 368; PMID: 19736513; http://dx.doi.org/10.4161/cam.3.4.9548
  • David NB, Sapède D, Saint-Etienne L, Thisse C, Thisse B, Dambly-Chaudière C, et al. Molecular basis of cell migration in the fish lateral line: Role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 2002; 99:16297 - 16302; PMID: 12444253; http://dx.doi.org/10.1073/pnas.252339399
  • Li Q, Shirabe K, Kuwada JY. Chemokine signaling regulates sensory cell migration in zebrafish. Dev Biol 2004; 269:123 - 136; PMID: 15081362; http://dx.doi.org/10.1016/j.ydbio.2004.01.020
  • Dambly-Chaudière C, Cubedo N, Ghysen A. Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1. BMC Dev Biol 2007; 7:23; PMID: 17394634; http://dx.doi.org/10.1186/1471-213X-7-23
  • Valentin G, Haas P, Gilmour D. The chemokine sdf1a coordinates tissue migration through the spatially restricted activation of cxcr7 and cxcr4b. Curr Biol 2007; 17:1026 - 1031; PMID: 17570670; http://dx.doi.org/10.1016/j.cub.2007.05.020
  • Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H, Minina S, et al. Control of chemokine-guided cell migration by ligand sequestration. Cell 2008; 132:463 - 473; PMID: 18267076; http://dx.doi.org/10.1016/j.cell.2007.12.034
  • Lecaudey V, Gilmour D. Organizing moving groups during morphogenesis. Curr Opin Cell Biol 2006; 18:102 - 107; PMID: 16352429; http://dx.doi.org/10.1016/j.ceb.2005.12.001
  • Streichan SJ, Valentin G, Gilmour D, Hufnagel L. Collective cell migration guided by dynamically maintained gradients. Phys Biol 2011; 8:45004; PMID: 21750360; http://dx.doi.org/10.1088/1478-3975/8/4/045004
  • Hava D, Forster U, Matsuda M, Cui S, Link BA, Eichhorst J, et al. Apical membrane maturation and cellular rosette formation during morphogenesis of the zebrafish lateral line. J Cell Sci 2009; 122:687 - 695; PMID: 19208766; http://dx.doi.org/10.1242/jcs.032102
  • Sai X, Ladher RK. FGF signaling regulates cytoskeletal remodeling during epithelial morphogenesis. Curr Biol 2008; 18:976 - 981; PMID: 18583133; http://dx.doi.org/10.1016/j.cub.2008.05.049
  • Laguerre L, Ghysen A, Dambly-Chaudiere C. Mitotic patterns in the migrating lateral line cells of zebrafish embryos. Dev Dyn 2009; 238:1042 - 1051; PMID: 19334282; http://dx.doi.org/10.1002/dvdy.21938
  • Laguerre L, Soubiran F, Ghysen A, Konig N, Dambly-Chaudiere C. Cell proliferation in the developing lateral line system of zebrafish embryos. Dev Dyn 2005; 233:466 - 472; PMID: 15779042; http://dx.doi.org/10.1002/dvdy.20343
  • Aman A, Nguyen M, Piotrowski T. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis. Dev Biol 2011; 349:470 - 482; PMID: 20974120; http://dx.doi.org/10.1016/j.ydbio.2010.10.022
  • Gamba L, Cubedo N, Lutfalla G, Ghysen A, Dambly-Chaudiere C. lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish. Dev Dyn 2010; 239:3163 - 3171; PMID: 20981829; http://dx.doi.org/10.1002/dvdy.22469
  • Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 1996; 86:391 - 399; PMID: 8756721; http://dx.doi.org/10.1016/S0092-8674(00)80112-9
  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996; 382:638 - 642; PMID: 8757136; http://dx.doi.org/10.1038/382638a0
  • Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, et al. p53 activation by knockdown technologies. PLoS Genet 2007; 3:78; PMID: 17530925; http://dx.doi.org/10.1371/journal.pgen.0030078
  • Haines L, Neyt C, Gautier P, Keenan DG, Bryson-Richardson RJ, Hollway GE, et al. Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish. Development 2004; 131:4857 - 4869; PMID: 15342468; http://dx.doi.org/10.1242/dev.01374
  • Villablanca EJ, Renucci A, Sapède D, Lec V, Soubiran F, Sandoval PC, et al. Control of cell migration in the zebrafish lateral line: Implication of the gene “Tumour-Associated Calcium Signal Transducer,” tacstd. Dev Dyn 2006; 235:1578 - 1588; PMID: 16552761; http://dx.doi.org/10.1002/dvdy.20743
  • Kerstetter AE, Azodi A, Liu Q. Cadherin-2 function in the cranial ganglia and lateral line system of developing zebrafish. Dev Dyn 2004; 230:137 - 143; PMID: 15108318; http://dx.doi.org/10.1002/dvdy.20021
  • Liu Q, Ensign RD, Azodi E. Cadherin-1, -2 and -4 expression in the cranial ganglia and lateral line system of developing zebrafish. Gene Expr Patterns 2003; 3:653 - 658; PMID: 12972001; http://dx.doi.org/10.1016/S1567-133X(03)00109-1
  • Wada H, Hamaguchi S, Sakaizumi M. Development of diverse lateral line patterns on the teleost caudal fin. Dev Dyn 2008; 237:2889 - 2902; PMID: 18816847; http://dx.doi.org/10.1002/dvdy.21710
  • McGraw HF, Drerup CM, Culbertson MD, Linbo T, Raible DW, Nechiporuk AV. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium. Development 2011; 138:3921 - 3930; PMID: 21862556; http://dx.doi.org/10.1242/dev.062554
  • Valdivia LE, Young RM, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, et al. Lef1-dependent Wnt/β-catenin signalling drives the proliferative engine that maintains tissue homeostasis during lateral line development. Development 2011; 138:3931 - 3941; PMID: 21862557; http://dx.doi.org/10.1242/dev.062695
  • Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor CXCR7 in T lymphocytes. J Biol Chem 2005; 280:35760 - 35766; PMID: 16107333; http://dx.doi.org/10.1074/jbc.M508234200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.