1,014
Views
27
CrossRef citations to date
0
Altmetric
Review

How can grafted breast cancer models be optimized?

, , , , , , & show all
Pages 855-864 | Received 09 Jun 2011, Accepted 18 Sep 2011, Published online: 15 Nov 2011

References

  • Malvezzi M, Arfe A, Bertuccio P, Levi F, La Vecchia C, Negri E.. European cancer mortality predictions for the year 2011. Ann Oncol 2011; 22:947 - 56; http://dx.doi.org/10.1093/annonc/mdq774; PMID: 21303801
  • Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 1996; 39:7 - 20; http://dx.doi.org/10.1007/BF01806074; PMID: 8738602
  • Mannocci A, De Feo E, de Waure C, Specchia ML, Gualano MR, Barone C, et al. Use of trastuzumab in HER2-positive metastatic breast cancer beyond disease progression: a systematic review of published studies. Tumori 2010; 96:385 - 91; PMID: 20845797
  • Venkatesh S, Lipper RA. Role of the development scientist in compound lead selection and optimization. J Pharm Sci 2000; 89:145 - 54; http://dx.doi.org/10.1002/(SICI)1520-6017(200002)89:2<145::AID-JPS2>3.0.CO;2-6; PMID: 10688744
  • Clarke R. The role of preclinical animal models in breast cancer drug development. Breast Cancer Res 2009; 11:Suppl 3 S22; PMID: 20030874
  • Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates?. Nat Rev Drug Discov 2004; 3:711 - 5; http://dx.doi.org/10.1038/nrd1470; PMID: 15286737
  • Kinders R, Parchment RE, Ji J, Kummar S, Murgo AJ, Gutierrez M, et al. Phase 0 clinical trials in cancer drug development: from FDA guidance to clinical practice. Mol Interv 2007; 7:325 - 34; http://dx.doi.org/10.1124/mi.7.6.9; PMID: 18199854
  • Burchill SA. What do, can and should we learn from models to evaluate potential anticancer agents?. Future Oncol 2006; 2:201 - 11; http://dx.doi.org/10.2217/14796694.2.2.201; PMID: 16563089
  • Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003; 9:4227 - 39; PMID: 14519650
  • Hindié E, Groheux D, Brenot-Rossi I, Rubello D, Moretti JL, Espie M. The sentinel node procedure in breast cancer: nuclear medicine as the starting point. J Nucl Med 2011; 52:405 - 14; http://dx.doi.org/10.2967/jnumed.110.081711; PMID: 21321267
  • Fantozzi A, Christofori G. Mouse models of breast cancer metastasis. Breast Cancer Res 2006; 8:212; http://dx.doi.org/10.1186/bcr1530; PMID: 16887003
  • Doré-Savard L, Otis V, Belleville K, Lemire M, Archambault M, Tremblay L, et al. Behavioral, medical imaging and histopathological features of a new rat model of bone cancer pain. PLoS ONE 2010; 5:e13774; http://dx.doi.org/10.1371/journal.pone.0013774; PMID: 21048940
  • Chia YH, Ellis MJ, Ma CX. Neoadjuvant endocrine therapy in primary breast cancer: indications and use as a research tool. Br J Cancer 2010; 103:759 - 64; http://dx.doi.org/10.1038/sj.bjc.6605845; PMID: 20700118
  • Eroles P, Bosch A, Bermejo B, Lluch A. Mechanisms of resistance to hormonal treatment in breast cancer. Clin Transl Oncol 2010; 12:246 - 52; http://dx.doi.org/10.1007/s12094-010-0500-1; PMID: 20462833
  • Hayes E, Nicholson RI, Hiscox S. Acquired endocrine resistance in breast cancer: implications for tumour metastasis. Front Biosci 2011; 16:838 - 48; http://dx.doi.org/10.2741/3723; PMID: 21196206
  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406:747 - 52; http://dx.doi.org/10.1038/35021093; PMID: 10963602
  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98:10869 - 74; http://dx.doi.org/10.1073/pnas.191367098; PMID: 11553815
  • Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 2003; 100:8418 - 23; http://dx.doi.org/10.1073/pnas.0932692100; PMID: 12829800
  • Thompson HJ, Singh M. Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 2000; 5:409 - 20; http://dx.doi.org/10.1023/A:1009582012493; PMID: 14973385
  • Kim IS, Baek SH. Mouse models for breast cancer metastasis. Biochem Biophys Res Commun.
  • Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004; 83:249 - 89; http://dx.doi.org/10.1023/B:BREA.0000014042.54925.cc; PMID: 14758095
  • Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89:10578 - 82; http://dx.doi.org/10.1073/pnas.89.22.10578; PMID: 1359541
  • Kuperwasser C, Dessain S, Bierbaum BE, Garnet D, Sperandio K, Gauvin GP, et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005; 65:6130 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-04-1408; PMID: 16024614
  • Blouin S, Basle MF, Chappard D. Rat models of bone metastases. Clin Exp Metastasis 2005; 22:605 - 14; http://dx.doi.org/10.1007/s10585-006-9002-5; PMID: 16670964
  • Hu Z, Zhang Z, Guise T, Seth P. Systemic delivery of an oncolytic adenovirus expressing soluble transforming growth factor-beta receptor II-Fc fusion protein can inhibit breast cancer bone metastasis in a mouse model. Hum Gene Ther 2010; 21:1623 - 9; http://dx.doi.org/10.1089/hum.2010.018; PMID: 20712434
  • Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11:5678 - 85; http://dx.doi.org/10.1158/1078-0432.CCR-04-2421; PMID: 16115903
  • Andrechek ER, Nevins JR. Mouse models of cancers: opportunities to address heterogeneity of human cancer and evaluate therapeutic strategies. J Mol Med 2010; 88:1095 - 100; http://dx.doi.org/10.1007/s00109-010-0644-z; PMID: 20574808
  • Maglione JE, McGoldrick ET, Young LJ, Namba R, Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther 2004; 3:941 - 53; PMID: 15299077
  • Meyer DS, Brinkhaus H, Muller U, Muller M, Cardiff RD, Bentires-Alj M. Luminal expression of pik3ca mutant h1047r in the mammary gland induces heterogeneous tumors. Cancer Res 2011; 71:4344 - 51; http://dx.doi.org/10.1158/0008-5472.CAN-10-3827; PMID: 21482677
  • Schneider SL, Fuqua SA, Speeg KV, Tandon AK, McGuire WL. Isolation and characterization of an adriamycin-resistant breast tumor cell line. In Vitro Cell Dev Biol 1990; 26:621 - 8; http://dx.doi.org/10.1007/BF02624212; PMID: 1972704
  • Medina D. Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis 2007; 28:63 - 8; PMID: 18057544
  • Wang B, Kennan WS, Yasukawa-Barnes J, Lindstrom MJ, Gould MN. Difference in the response of neu and ras oncogene-induced rat mammary carcinomas to early and late ovariectomy. Cancer Res 1992; 52:4102 - 5; PMID: 1353410
  • Gould MN. Rodent models for the study of etiology, prevention and treatment of breast cancer. Semin Cancer Biol 1995; 6:147 - 52; http://dx.doi.org/10.1006/scbi.1995.0023; PMID: 7495982
  • Smits BM, Cotroneo MS, Haag JD, Gould MN. Genetically engineered rat models for breast cancer. Breast Dis 2007; 28:53 - 61; PMID: 18057543
  • Zarbl H. Toxicogenomic analyses of genetic susceptibility to mammary gland carcinogenesis in rodents: implications for human breast cancer. Breast Dis 2007; 28:87 - 105; PMID: 18057546
  • Kim JB, O'Hare MJ, Stein R. Models of breast cancer: is merging human and animal models the future?. Breast Cancer Res 2004; 6:22 - 30; http://dx.doi.org/10.1186/bcr645; PMID: 14680482
  • Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol 2011; 223:307 - 17; http://dx.doi.org/10.1002/path.2808; PMID: 21125683
  • Russo J, Russo IH. Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 2000; 5:187 - 200; http://dx.doi.org/10.1023/A:1026443305758; PMID: 11149572
  • Nandi S, Guzman RC, Yang J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc Natl Acad Sci USA 1995; 92:3650 - 7; http://dx.doi.org/10.1073/pnas.92.9.3650; PMID: 7731959
  • Huang G, Tong C, Kumbhani DS, Ashton C, Yan H, Ying QL. Beyond knockout rats: new insights into finer genome manipulation in rats. Cell Cycle 2011; 10:1059 - 66; http://dx.doi.org/10.4161/cc.10.7.15233; PMID: 21383544
  • Matsuoka Y, Hamaguchi T, Fukamachi K, Yoshida M, Watanabe G, Taya K, et al. Molecular analysis of rat mammary carcinogenesis: an approach from carcinogenesis research to cancer prevention. Med Mol Morphol 2007; 40:185 - 90; http://dx.doi.org/10.1007/s00795-007-0369-4; PMID: 18085376
  • Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 2010; 29:1093 - 102; http://dx.doi.org/10.1038/onc.2009.416; PMID: 19946335
  • de Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6:24 - 37; http://dx.doi.org/10.1038/nrc1782; PMID: 16397525
  • Bosma MJ, Carroll AM. The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 1991; 9:323 - 50; http://dx.doi.org/10.1146/annurev.iy.09.040191.001543; PMID: 1910681
  • Carroll AM, Bosma MJ. T-lymphocyte development in scid mice is arrested shortly after the initiation of T-cell receptor delta gene recombination. Genes Dev 1991; 5:1357 - 66; http://dx.doi.org/10.1101/gad.5.8.1357; PMID: 1869046
  • Fridman R, Kibbey MC, Royce LS, Zain M, Sweeney M, Jicha DL, et al. Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst 1991; 83:769 - 74; http://dx.doi.org/10.1093/jnci/83.11.769; PMID: 1789823
  • Steel GG, Courtenay VD, Rostom AY. Improved immune-suppression techniques for the exongrafting of human tumours. Br J Cancer 1978; 37:224 - 30; http://dx.doi.org/10.1038/bjc.1978.30; PMID: 343803
  • Goodman MM, McCullough JL, Biren CA, Barr RJ. A model of human melanoma in cyclosporine-immunosuppressed rats. J Invest Dermatol 1987; 88:141 - 4; http://dx.doi.org/10.1111/1523-1747.ep12525289; PMID: 3492567
  • Denkert C, Darb-Esfahani S, Loibl S, Anagnostopoulos I, Johrens K. Anti-cancer immune response mechanisms in neoadjuvant and targeted therapy. Semin Immunopathol 2011.
  • Carson WE 3rd, Shapiro CL, Crespin TR, Thornton LM, Andersen BL. Cellular immunity in breast cancer patients completing taxane treatment. Clin Cancer Res 2004; 10:3401 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-1016-03; PMID: 15161695
  • Chan OT, Yang LX. The immunological effects of taxanes. Cancer Immunol Immunother 2000; 49:181 - 5; http://dx.doi.org/10.1007/s002620000122; PMID: 10941900
  • Santosuosso M, Divangahi M, Zganiacz A, Xing Z. Reduced tissue macrophage population in the lung by anticancer agent cyclophosphamide: restoration by local granulocyte macrophage-colony-stimulating factor gene transfer. Blood 2002; 99:1246 - 52; http://dx.doi.org/10.1182/blood.V99.4.1246; PMID: 11830472
  • Xia TS, Wang J, Yin H, Ding Q, Zhang YF, Yang HW, et al. Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer. Oncol Rep 2010; 24:203 - 11; PMID: 20514463
  • Wagner KU. Models of breast cancer: quo vadis, animal modeling?. Breast Cancer Res 2004; 6:31 - 8; http://dx.doi.org/10.1186/bcr723; PMID: 14680483
  • Vernon AE, Bakewell SJ, Chodosh LA. Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 2007; 8:199 - 213; http://dx.doi.org/10.1007/s11154-007-9041-5; PMID: 17657606
  • Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52:1399 - 405; PMID: 1540948
  • Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 2008; 8:228; http://dx.doi.org/10.1186/1471-2407-8-228; PMID: 18691423
  • Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. Curr Protoc Immunol 2001; Chapter 20:Unit 20 2.
  • Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011; 125:13 - 22; http://dx.doi.org/10.1016/j.jsbmb.2011.02.001; PMID: 21335088
  • Lipton A, Santen RJ, Santner SJ, Harvey HA, Sanders SI, Matthews YL. Prognostic value of breast cancer aromatase. Cancer 1992; 70:1951 - 5; http://dx.doi.org/10.1002/1097-0142(19921001)70:7<1951::AID-CNCR2820700723>3.0.CO;2-#; PMID: 1525771
  • Jefcoate CR, Liehr JG, Santen RJ, Sutter TR, Yager JD, Yue W, et al. Tissue-specific synthesis and oxidative metabolism of estrogens. J Natl Cancer Inst Monogr 2000; 95 - 112; PMID: 10963622
  • Yue W, Wang JP, Hamilton CJ, Demers LM, Santen RJ. In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 1998; 58:927 - 32; PMID: 9500452
  • Ferguson AT, Davidson NE. Regulation of estrogen receptor alpha function in breast cancer. Crit Rev Oncog 1997; 8:29 - 46; PMID: 9516085
  • Cavalieri E, Rogan E. Catechol quinones of estrogens in the initiation of breast, prostate, and other human cancers: keynote lecture. Ann N Y Acad Sci 2006; 1089:286 - 301; http://dx.doi.org/10.1196/annals.1386.042; PMID: 17261777
  • Santen R. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann N Y Acad Sci 2009; 1155:132 - 40; http://dx.doi.org/10.1111/j.1749-6632.2008.03685.x; PMID: 19250200
  • Clevenger CV, Gadd SL, Zheng J. New mechanisms for PRLr action in breast cancer. Trends Endocrinol Metab 2009; 20:223 - 9; http://dx.doi.org/10.1016/j.tem.2009.03.001; PMID: 19535262
  • Maus MV, Reilly SC, Clevenger CV. Prolactin as a chemoattractant for human breast carcinoma. Endocrinology 1999; 140:5447 - 50; http://dx.doi.org/10.1210/en.140.11.5447; PMID: 10537179
  • Perks CM, Keith AJ, Goodhew KL, Savage PB, Winters ZE, Holly JM. Prolactin acts as a potent survival factor for human breast cancer cell lines. 2005. Br J Cancer 2004; 91:305 - 11; http://dx.doi.org/10.1038/sj.bjc.6601947; PMID: 15213724
  • Lunt SJ, Kalliomaki TM, Brown A, Yang VX, Milosevic M, Hill RP. Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 2008; 8:2; http://dx.doi.org/10.1186/1471-2407-8-2; PMID: 18179711
  • Wilmanns C, Fan D, O'Brian CA, Bucana CD, Fidler IJ. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int J Cancer 1992; 52:98 - 104; http://dx.doi.org/10.1002/ijc.2910520118; PMID: 1500231
  • Zechmann CM, Woenne EC, Brix G, Radzwill N, Ilg M, Bachert P, et al. Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia 2007; 9:57 - 67; http://dx.doi.org/10.1593/neo.06688; PMID: 17325744
  • Tsuzuki Y, Mouta Carreira C, Bockhorn M, Xu L, Jain RK, Fukumura D. Pancreas microenvironment promotes VEGF expression and tumor growth: novel window models for pancreatic tumor angiogenesis and microcirculation. Lab Invest 2001; 81:1439 - 51; PMID: 11598156
  • Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 2010; 21:33 - 9; http://dx.doi.org/10.1016/j.semcdb.2009.10.010; PMID: 19896548
  • Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432:332 - 7; http://dx.doi.org/10.1038/nature03096; PMID: 15549095
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141:52 - 67; http://dx.doi.org/10.1016/j.cell.2010.03.015; PMID: 20371345
  • Radisky ES, Radisky DC. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:201 - 12; http://dx.doi.org/10.1007/s10911-010-9177-x; PMID: 20440544
  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 2011; 278:16 - 27; http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x; PMID: 21087457
  • Pupa SM, Menard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 2002; 192:259 - 67; http://dx.doi.org/10.1002/jcp.10142; PMID: 12124771
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860 - 7; http://dx.doi.org/10.1038/nature01322; PMID: 12490959
  • Cole LK, Jacobs RL, Vance DE. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology.
  • Tabruyn SP, Griffioen AW. Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 2007; 355:1 - 5; http://dx.doi.org/10.1016/j.bbrc.2007.01.123; PMID: 17276388
  • Döme B, Hendrix MJ, Paku S, Tovari J, Timar J. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. Am J Pathol 2007; 170:1 - 15; PMID: 17200177
  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001; 411:342 - 8; http://dx.doi.org/10.1038/35077213; PMID: 11357141
  • Chen JH, Lin YC, Huang YS, Chen TJ, Lin WY, Han KW. Induction of VX2 carcinoma in rabbit liver: comparison of two inoculation methods. Lab Anim 2004; 38:79 - 84; http://dx.doi.org/10.1258/00236770460734434; PMID: 14979992
  • Fei XF, Zhang QB, Dong J, Diao Y, Wang ZM, Li RJ, et al. Development of clinically relevant orthotopic xenograft mouse model of metastatic lung cancer and glioblastoma through surgical tumor tissues injection with trocar. J Exp Clin Cancer Res 2010; 29:84; http://dx.doi.org/10.1186/1756-9966-29-84; PMID: 20587035
  • Thorstensen O, Isberg B, Svahn U, Jorulf H, Venizelos N, Jaremko G. Experimental tissue transplantation using a biopsy instrument and radiologic methods. Invest Radiol 1994; 29:469 - 71; http://dx.doi.org/10.1097/00004424-199404000-00015; PMID: 8034455
  • Carlsson G, Gullberg B, Hafstrom L. Estimation of liver tumor volume using different formulas - an experimental study in rats. J Cancer Res Clin Oncol 1983; 105:20 - 3; http://dx.doi.org/10.1007/BF00391826; PMID: 6833336
  • Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24:148 - 54; http://dx.doi.org/10.1007/BF00300234; PMID: 2544306
  • O'Neill K, Lyons SK, Gallagher WM, Curran KM, Byrne AT. Bioluminescent imaging: a critical tool in pre-clinical oncology research. J Pathol 2010; 220:317 - 27; PMID: 19967724
  • Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 2003; 13:231 - 43; PMID: 12598985
  • Tiffen JC, Bailey CG, Ng C, Rasko JE, Holst J. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 2010; 9:299; http://dx.doi.org/10.1186/1476-4598-9-299; PMID: 21092230
  • Sanz L, Santos-Valle P, Alonso-Camino V, Salas C, Serrano A, Vicario JL, et al. Long-term in vivo imaging of human angiogenesis: critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels. Microvasc Res 2008; 75:308 - 14; http://dx.doi.org/10.1016/j.mvr.2007.11.007; PMID: 18252255
  • Hong H, Yang Y, Zhang Y, Cai W. Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 2010; 10:1237 - 48; http://dx.doi.org/10.2174/156802610791384234; PMID: 20388105
  • Naik S, Piwnica-Worms D. Real-time imaging of beta-catenin dynamics in cells and living mice. Proc Natl Acad Sci USA 2007; 104:17465 - 70; http://dx.doi.org/10.1073/pnas.0704465104; PMID: 17954915
  • Koba W, Kim K, Lipton ML, Jelicks L, Das B, Herbst L, et al. Imaging devices for use in small animals. Semin Nucl Med 2011; 41:151 - 65; http://dx.doi.org/10.1053/j.semnuclmed.2010.12.003; PMID: 21440693
  • Piatkevich KD, Verkhusha VV. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr Opin Chem Biol 2010; 14:23 - 9; http://dx.doi.org/10.1016/j.cbpa.2009.10.011; PMID: 19914857
  • Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 2009; 324:804 - 7; http://dx.doi.org/10.1126/science.1168683; PMID: 19423828
  • Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci USA 2010; 107:4317 - 22; http://dx.doi.org/10.1073/pnas.0910261107; PMID: 20160097
  • Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci USA 2010; 107:4311 - 6; http://dx.doi.org/10.1073/pnas.0910283107; PMID: 20160077
  • Ting R, Aguilera TA, Crisp JL, Hall DJ, Eckelman WC, Vera DR, et al. Fast 18F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel lymph nodes. Bioconjug Chem 2010; 21:1811 - 9; http://dx.doi.org/10.1021/bc1001328; PMID: 20873712
  • Holdsworth DW. Micro-CT in small animal and specimen imaging. Trends Biotechnol 2002.
  • Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta 2010; 1798:2266 - 73; http://dx.doi.org/10.1016/j.bbamem.2010.03.016; PMID: 20346346
  • Levin CS. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 2005; 32:Suppl 2 S325 - 45; http://dx.doi.org/10.1007/s00259-005-1973-y; PMID: 16341514
  • Monteil J, Dutour A, Akla B, Chianea T, Le Brun V, Grossin L, et al. In vivo follow-up of rat tumor models with 2-deoxy-2-[F-18]fluoro-D-glucose/dual-head coincidence gamma camera imaging. Mol Imaging Biol 2005; 7:220 - 8; http://dx.doi.org/10.1007/s11307-005-4115-9; PMID: 15912426
  • Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92:205 - 16; http://dx.doi.org/10.1093/jnci/92.3.205; PMID: 10655437
  • Padhani AR, Ollivier L. The RECIST (Response Evaluation Criteria in Solid Tumors) criteria: implications for diagnostic radiologists. Br J Radiol 2001; 74:983 - 6; PMID: 11709461
  • Blanco MA, Kang Y. Signaling pathways in breast cancer metastasis - novel insights from functional genomics. Breast Cancer Res 2011; 13:206; http://dx.doi.org/10.1186/bcr2831; PMID: 21457525
  • Goodison S, Sun Y, Urquidi V. Derivation of cancer diagnostic and prognostic signatures from gene expression data. Bioanalysis 2010; 2:855 - 62; http://dx.doi.org/10.4155/bio.10.35; PMID: 21083217
  • Polyak K. Molecular markers for the diagnosis and management of ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010; 2010:210 - 3; http://dx.doi.org/10.1093/jncimonographs/lgq019; PMID: 20956832
  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344:783 - 92; http://dx.doi.org/10.1056/NEJM200103153441101; PMID: 11248153
  • Hattori N, Okochi-Takada E, Kikuyama M, Wakabayashi M, Yamashita S, Ushijima T. Methylation silencing of angiopoietin-like 4 in rat and human mammary carcinomas. Cancer Sci 2011; 102:1337 - 43; http://dx.doi.org/10.1111/j.1349-7006.2011.01955.x; PMID: 21489049
  • Demircan B, Dyer LM, Gerace M, Lobenhofer EK, Robertson KD, Brown KD. Comparative epigenomics of human and mouse mammary tumors. Genes Chromosomes Cancer 2009; 48:83 - 97; http://dx.doi.org/10.1002/gcc.20620; PMID: 18836996
  • Szpirer C.. Cancer research in rat models. Methods Mol Biol 2010; 597:445 - 58; http://dx.doi.org/10.1007/978-1-60327-389-3_30; PMID: 20013251
  • Coleman RE. Future directions in the treatment and prevention of bone metastases. Am J Clin Oncol 2002; 25:S32 - 8; http://dx.doi.org/10.1097/00000421-200212001-00006; PMID: 12562049
  • Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2:584 - 93; http://dx.doi.org/10.1038/nrc867; PMID: 12154351
  • Engel LW, Young NA. Human breast carcinoma cells in continuous culture: a review. Cancer Res 1978; 38:4327 - 39; PMID: 212193
  • Chow LW, Cheung MN, Loo WT, Guan XY. A rat cell line derived from DMBA-induced mammary carcinoma. Life Sci 2003; 73:27 - 40; http://dx.doi.org/10.1016/S0024-3205(03)00253-4; PMID: 12726884
  • Eil C, Douglass EC, Rosenburg SM, Kano-Sueoka T. Receptor characteristics of the rat mammary carcinoma cell line 64-24. Cancer Res 1981; 41:42 - 8; PMID: 6256064
  • Oikawa T, Matsuzawa A, Iwaguchi T. Progression from hormone dependence to autonomy and angiogenesis in mouse mammary tumours. Br J Cancer 1986; 54:91 - 6; http://dx.doi.org/10.1038/bjc.1986.156; PMID: 2425838
  • Nakanishi H, Taylor RM, Chrest FJ, Masui T, Utsumi K, Tatematsu M, et al. Progression of hormone-dependent adenocarcinoma cells to hormone-independent spindle carcinoma cells in vitro in a clonal spontaneous rat mammary tumor cell line. Cancer Res 1995; 55:399 - 407; PMID: 7529136
  • Peterson JK, Houghton PJ. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 2004; 40:837 - 44; http://dx.doi.org/10.1016/j.ejca.2004.01.003; PMID: 15120039
  • Paoloni M, Khanna C. Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 2008; 8:147 - 56; http://dx.doi.org/10.1038/nrc2273; PMID: 18202698
  • Knapp DW, Waters DJ. Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol Med Today 1997; 3:8 - 11; http://dx.doi.org/10.1016/S1357-4310(96)20031-0; PMID: 9021736
  • Gordon I, Paoloni M, Mazcko C, Khanna C. The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med 2009; 6:e1000161; http://dx.doi.org/10.1371/journal.pmed.1000161; PMID: 19823573