950
Views
15
CrossRef citations to date
0
Altmetric
Review

The heat shock proteins as targets for radiosensitization and chemosensitization in cancer

&
Pages 1023-1031 | Received 28 Sep 2011, Accepted 11 Oct 2011, Published online: 15 Dec 2011

References

  • Ritossa F. A new puffing pattern induced by temperature and DNP in Drosophila. Experimentia 1962; 18:571 - 573; http://dx.doi.org/10.1007/BF02172188
  • Giménez Ortiz A, Montalar Salcedo J. Heat shock proteins as targets in oncology. Clin Transl Oncol 2010; 12:166 - 173; PMID: 20231121; http://dx.doi.org/10.1007/s12094-010-0486-8
  • Almeida MB, do Nascimento JL, Herculano AM, Crespo-Lopez ME. Molecular chaperones: Toward new therapeutic tools. Biomed Pharmacother 2011;
  • Didelot C, Lanneau D, Brunet M, Joly AL, De Thonel A, Chiosis G, et al. Anti-cancer therapeutic approaches based on intracellular and extracellular heat shock proteins. Curr Med Chem 2007; 14:2839 - 2847; PMID: 18045130; http://dx.doi.org/10.2174/092986707782360079
  • Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545 - 555; PMID: 20628411; http://dx.doi.org/10.1038/nrm2938
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22:631 - 677; PMID: 2853609; http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
  • Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. J Biosci 2007; 32:595 - 610; PMID: 17536179; http://dx.doi.org/10.1007/s12038-007-0059-3
  • Stetler RA, Gan Y, Zhang W, Liou AK, Gao Y, Cao G, et al. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog Neurobiol 2010; 92:184 - 211; PMID: 20685377; http://dx.doi.org/10.1016/j.pneurobio.2010.05.002
  • Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: antiapoptotic proteins with tumorigenic properties. Cell Cycle 2006; 5:2592 - 2601; PMID: 17106261; http://dx.doi.org/10.4161/cc.5.22.3448
  • Sôti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146:769 - 780; PMID: 16170327; http://dx.doi.org/10.1038/sj.bjp.0706396
  • Powers MV, Jones K, Barillari C, Westwood I, van Montfort RL, Workman P. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone?. Cell Cycle 2010; 9:1542 - 1550; PMID: 20372081; http://dx.doi.org/10.4161/cc.9.8.11204
  • Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991; 66:191 - 197; PMID: 1855252; http://dx.doi.org/10.1016/0092-8674(91)90611-2
  • Ni M, Lee AS. ER chaperones in mammalian development and human diseases. FEBS Lett 2007; 581:3641 - 3651; PMID: 17481612; http://dx.doi.org/10.1016/j.febslet.2007.04.045
  • Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 2001; 286:433 - 442; PMID: 11511077; http://dx.doi.org/10.1006/bbrc.2001.5427
  • Arispe N, Doh M, Simakova O, Kurganov B, De Maio A. Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 2004; 18:1636 - 1645; PMID: 15522909; http://dx.doi.org/10.1096/fj.04-2088com
  • Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5:761 - 772; PMID: 16175177; http://dx.doi.org/10.1038/nrc1716
  • Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004; 10:283 - 290; PMID: 15177193; http://dx.doi.org/10.1016/j.molmed.2004.04.006
  • Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J Biol Chem 2000; 275:10519 - 10526; PMID: 10744744; http://dx.doi.org/10.1074/jbc.275.14.10519
  • Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 2002; 9:401 - 410; PMID: 11864612; http://dx.doi.org/10.1016/S1097-2765(02)00450-1
  • Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 2000; 97:10832 - 10837; PMID: 10995457; http://dx.doi.org/10.1073/pnas.170276797
  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N. Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 2002; 277:39858 - 39866; PMID: 12176997; http://dx.doi.org/10.1074/jbc.M206322200
  • Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 2000; 19:4310 - 4322; PMID: 10944114; http://dx.doi.org/10.1093/emboj/19.16.4310
  • Pandita TK, Pandita S, Bhaumik SR. Molecular parameters of hyperthermia for radiosensitization. Crit Rev Eukaryot Gene Expr 2009; 19:235 - 251; PMID: 19883367
  • Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 2002; 86:376 - 393; PMID: 12112007; http://dx.doi.org/10.1002/jcb.10232
  • Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, et al. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 2007; 67:616 - 625; PMID: 17234771; http://dx.doi.org/10.1158/0008-5472.CAN-06-1567
  • Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004; 200:425 - 435; PMID: 15314073; http://dx.doi.org/10.1084/jem.20040531
  • Gabai VL, Mabuchi K, Mosser DD, Sherman MY. Hsp72 and stress kinase c-jun N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biol 2002; 22:3415 - 3424; PMID: 11971973; http://dx.doi.org/10.1128/MCB.22.10.3415-3424.2002
  • Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, et al. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 2003; 22:6669 - 6678; PMID: 14555980; http://dx.doi.org/10.1038/sj.onc.1206794
  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000; 2:476 - 483; PMID: 10934467; http://dx.doi.org/10.1038/35019510
  • Jäättelä M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 1998; 17:6124 - 6134; PMID: 9799222; http://dx.doi.org/10.1093/emboj/17.21.6124
  • Lin KM, Lin B, Lian IY, Mestril R, Scheffler IE, Dillmann WH. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001; 103:1787 - 1792; PMID: 11282911
  • Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002; 105:2899 - 2904; PMID: 12070120; http://dx.doi.org/10.1161/01.CIR.0000019403.35847.23
  • Faried A, Sohda M, Nakajima M, Miyazaki T, Kato H, Kuwano H. Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma. Eur J Cancer 2004; 40:2804 - 2811; PMID: 15571964; http://dx.doi.org/10.1016/j.ejca.2004.08.013
  • Arya R, Lakhotia SC. Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 2008; 13:509 - 526; PMID: 18506601; http://dx.doi.org/10.1007/s12192-008-0051-3
  • Zeng L, Hu Z, Lu W, Tang X, Zhang J, Li T, et al. Small heat shock proteins: recent advances in neuropathy. Curr Neurovasc Res 2010; 7:155 - 166; PMID: 20438447; http://dx.doi.org/10.2174/156720210791184934
  • Wang A, Liu X, Sheng S, Ye H, Peng T, Shi F, et al. Dysregulation of heat shock protein 27 expression in oral tongue squamous cell carcinoma. BMC Cancer 2009; 9:167; PMID: 19497117; http://dx.doi.org/10.1186/1471-2407-9-167
  • Lo Muzio L, Campisi G, Farina A, Rubini C, Ferrari F, Falaschini S, et al. Prognostic value of HSP27 in head and neck squamous cell carcinoma: a retrospective analysis of 57 tumours. Anticancer Res 2006; 26:1343 - 1349; PMID: 16619543
  • Garrido C. Size matters: of the small HSP27 and its large oligomers. Cell Death Differ 2002; 9:483 - 485; PMID: 11973606; http://dx.doi.org/10.1038/sj.cdd.4401005
  • Bova MP, McHaourab HS, Han Y, Fung BK. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 2000; 275:1035 - 1042; PMID: 10625643; http://dx.doi.org/10.1074/jbc.275.2.1035
  • Lelj-Garolla B, Mauk AG. Self-association of a small heat shock protein. J Mol Biol 2005; 345:631 - 642; PMID: 15581903; http://dx.doi.org/10.1016/j.jmb.2004.10.056
  • Gibert B, Hadchity E, Czekalla A, Aloy MT, Colas P, Rodriguez-Lafrasse C, et al. Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers. Oncogene 2011;
  • Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20:7602 - 7612; PMID: 11003656; http://dx.doi.org/10.1128/MCB.20.20.7602-7612.2000
  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2:645 - 652; PMID: 10980706; http://dx.doi.org/10.1038/35023595
  • Choi SH, Lee YJ, Seo WD, Lee HJ, Nam JW, Kim J, et al. Altered cross-linking of HSP27 by zerumbone as a novel strategy for overcoming HSP27-mediated radioresistance. Int J Radiat Oncol Biol Phys 2011; 79:1196 - 1205; PMID: 21353161; http://dx.doi.org/10.1016/j.ijrobp.2010.10.025
  • Aloy MT, Hadchity E, Bionda C, Diaz-Latoud C, Claude L, Rousson R, et al. Protective role of Hsp27 protein against gamma radiation-induced apoptosis and radiosensitization effects of Hsp27 gene silencing in different human tumor cells. Int J Radiat Oncol Biol Phys 2008; 70:543 - 553; PMID: 17980509; http://dx.doi.org/10.1016/j.ijrobp.2007.08.061
  • Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 2005; 280:5281 - 5289; PMID: 15542604; http://dx.doi.org/10.1074/jbc.M407236200
  • Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, et al. Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 2003; 278:27828 - 27835; PMID: 12740362; http://dx.doi.org/10.1074/jbc.M303417200
  • Havasi A, Li Z, Wang Z, Martin JL, Botla V, Ruchalski K, et al. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2008; 283:12305 - 12313; PMID: 18299320; http://dx.doi.org/10.1074/jbc.M801291200
  • Mehlen P, Kretz-Remy C, Preville X, Arrigo AP. Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death. EMBO J 1996; 15:2695 - 2706; PMID: 8654367
  • Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 2005; 7:414 - 422; PMID: 15706088; http://dx.doi.org/10.1089/ars.2005.7.414
  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP. Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 2002; 22:816 - 834; PMID: 11784858; http://dx.doi.org/10.1128/MCB.22.3.816-834.2002
  • Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI, Gusev NB. Effects of small heat shock proteins on the thermal denaturation and aggregation of F-actin. Biochem Biophys Res Commun 2005; 331:1548 - 1553; PMID: 15883049; http://dx.doi.org/10.1016/j.bbrc.2005.04.077
  • Lee JH, Sun D, Cho KJ, Kim MS, Hong MH, Kim IK, et al. Overexpression of human 27 kDa heat shock protein in laryngeal cancer cells confers chemoresistance associated with cell growth delay. J Cancer Res Clin Oncol 2007; 133:37 - 46; PMID: 16906418; http://dx.doi.org/10.1007/s00432-006-0143-3
  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 1995; 15:505 - 516; PMID: 7799959
  • Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, et al. HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 2003; 23:5790 - 5802; PMID: 12897149; http://dx.doi.org/10.1128/MCB.23.16.5790-5802.2003
  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 2006; 31:164 - 172; PMID: 16483782; http://dx.doi.org/10.1016/j.tibs.2006.01.006
  • Shiota M, Kusakabe H, Izumi Y, Hikita Y, Nakao T, Funae Y, et al. Heat shock cognate protein 70 is essential for Akt signaling in endothelial function. Arterioscler Thromb Vasc Biol 2010; 30:491 - 497; PMID: 20018937; http://dx.doi.org/10.1161/ATVBAHA.109.193631
  • Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT, et al. Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 2005; 105:3722 - 3730; PMID: 15650054; http://dx.doi.org/10.1182/blood-2004-10-3999
  • Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, et al. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res 2007; 67:2932 - 2937; PMID: 17409397; http://dx.doi.org/10.1158/0008-5472.CAN-06-4511
  • Vargas-Roig LM, Gago FE, Tello O, Aznar JC, Ciocca DR. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 1998; 79:468 - 475; PMID: 9761114; http://dx.doi.org/10.1002/(SICI)1097-0215(19981023)79:5,468::AID-IJC4.3.0.CO;2-Z
  • Brondani Da Rocha A, Regner A, Grivicich I, Pretto Schunemann D, Diel C, Kovaleski G, et al. Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 2004; 25:777 - 785; PMID: 15289883
  • Abe M, Manola JB, Oh WK, Parslow DL, George DJ, Austin CL, et al. Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin Prostate Cancer 2004; 3:49 - 53; PMID: 15279691
  • Ray S, Lu Y, Kaufmann SH, Gustafson WC, Karp JE, Boldogh I, et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279:35604 - 35615; PMID: 15155749; http://dx.doi.org/10.1074/jbc.M401851200
  • Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M, et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia 2007; 21:93 - 101; PMID: 17109025; http://dx.doi.org/10.1038/sj.leu.2404463
  • Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH, et al. Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 2011; 117:1516 - 1528; PMID: 21425153; http://dx.doi.org/10.1002/cncr.25599
  • Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 1997; 57:2661 - 2667; PMID: 9205074
  • Zhu Z, Xu X, Yu Y, Graham M, Prince ME, Carey TE, et al. Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. Mol Pharm 2010; 7:1283 - 1290; PMID: 20540527; http://dx.doi.org/10.1021/mp100073s
  • Verrills NM, Liem NL, Liaw TY, Hood BD, Lock RB, Kavallaris M. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia-an in vivo study. Proteomics 2006; 6:1681 - 1694; PMID: 16456880; http://dx.doi.org/10.1002/pmic.200500417
  • Han J, Kioi M, Chu WS, Kasperbauer JL, Strome SE, Puri RK. Identification of potential therapeutic targets in human head & neck squamous cell carcinoma. Head Neck Oncol 2009; 1:27; PMID: 19602232; http://dx.doi.org/10.1186/1758-3284-1-27
  • Kabakov AE, Kudryavtsev VA, Gabai VL. Hsp90 inhibitors as promising agents for radiotherapy. J Mol Med (Berl) 2010; 88:241 - 247; PMID: 19946660
  • Dote H, Burgan WE, Camphausen K, Tofilon PJ. Inhibition of hsp90 compromises the DNA damage response to radiation. Cancer Res 2006; 66:9211 - 9220; PMID: 16982765; http://dx.doi.org/10.1158/0008-5472.CAN-06-2181
  • Basso AD, Solit DB, Munster PN, Rosen N. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 2002; 21:1159 - 1166; PMID: 11850835; http://dx.doi.org/10.1038/sj.onc.1205184
  • Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, et al. Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 2004; 64:6595 - 6602; PMID: 15374973; http://dx.doi.org/10.1158/0008-5472.CAN-03-3998
  • Choi DH, Ha JS, Lee WH, Song JK, Kim GY, Park JH, et al. Heat shock protein 27 is associated with irinotecan resistance in human colorectal cancer cells. FEBS Lett 2007; 581:1649 - 1656; PMID: 17395183; http://dx.doi.org/10.1016/j.febslet.2007.02.075
  • McCollum AK, Teneyck CJ, Sauer BM, Toft DO, Erlichman C. Up-regulation of heat shock protein 27 induces resistance to 17-allylamino-demethoxygeldanamycin through a glutathione-mediated mechanism. Cancer Res 2006; 66:10967 - 10975; PMID: 17108135; http://dx.doi.org/10.1158/0008-5472.CAN-06-1629
  • Matsui Y, Hadaschik BA, Fazli L, Andersen RJ, Gleave ME, So AI. Intravesical combination treatment with antisense oligonucleotides targeting heat shock protein-27 and HTI-286 as a novel strategy for high-grade bladder cancer. Mol Cancer Ther 2009; 8:2402 - 2411; PMID: 19625496; http://dx.doi.org/10.1158/1535-7163.MCT-09-0148
  • Machida H, Matsumoto Y, Shirai M, Kubota N. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Int J Radiat Biol 2003; 79:973 - 980; PMID: 14713575; http://dx.doi.org/10.1080/09553000310001626135
  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425:407 - 410; PMID: 14508491; http://dx.doi.org/10.1038/nature01913
  • Wang RE, Kao JL, Hilliard CA, Pandita RK, Roti Roti JL, Hunt CR, et al. Inhibition of heat shock induction of heat shock protein 70 and enhancement of heat shock protein 27 phosphorylation by quercetin derivatives. J Med Chem 2009; 52:1912 - 1921; PMID: 19296652; http://dx.doi.org/10.1021/jm801445c
  • Westerheide SD, Kawahara TL, Orton K, Morimoto RI. Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 2006; 281:9616 - 9622; PMID: 16469748; http://dx.doi.org/10.1074/jbc.M512044200
  • Teimourian S, Jalal R, Sohrabpour M, Goliaei B. Down-regulation of Hsp27 radiosensitizes human prostate cancer cells. Int J Urol 2006; 13:1221 - 1225; PMID: 16984557; http://dx.doi.org/10.1111/j.1442-2042.2006.01483.x
  • Hadchity E, Aloy MT, Paulin C, Armandy E, Watkin E, Rousson R, et al. Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol Ther 2009; 17:1387 - 1394; PMID: 19436268; http://dx.doi.org/10.1038/mt.2009.90
  • Schulte TW, Blagosklonny MV, Ingui C, Neckers L. Disruption of the Raf-1-Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J Biol Chem 1995; 270:24585 - 24588; PMID: 7592678; http://dx.doi.org/10.1074/jbc.270.41.24585
  • Dote H, Cerna D, Burgan WE, Camphausen K, Tofilon PJ. ErbB3 expression predicts tumor cell radiosensitization induced by Hsp90 inhibition. Cancer Res 2005; 65:6967 - 6975; PMID: 16061682; http://dx.doi.org/10.1158/0008-5472.CAN-05-1304
  • Hall E, Giaccia A. Radiobiology for the Radiologist 2006; Philadelphia Lippincott Williams and Wilkins
  • Dungey FA, Caldecott KW, Chalmers AJ. Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 2009; 8:2243 - 2254; PMID: 19671736; http://dx.doi.org/10.1158/1535-7163.MCT-09-0201
  • Lee YS, Chang HW, Jeong JE, Lee SW, Kim SY. Proteomic analysis of two head and neck cancer cell lines presenting different radiation sensitivity. Acta Otolaryngol 2008; 128:86 - 92; PMID: 17917836; http://dx.doi.org/10.1080/00016480601110196
  • Mehlen P, Kretz-Remy C, Briolay J, Fostan P, Mirault ME, Arrigo AP. Intracellular reactive oxygen species as apparent modulators of heat-shock protein 27 (hsp27) structural organization and phosphorylation in basal and tumour necrosis factor alpha-treated T47D human carcinoma cells. Biochem J 1995; 312:367 - 375; PMID: 8526844
  • Koll TT, Feis SS, Wright MH, Teniola MM, Richardson MM, Robles AI, et al. HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair. Mol Cancer Ther 2008; 7:1985 - 1992; PMID: 18645008; http://dx.doi.org/10.1158/1535-7163.MCT-07-2104
  • Noguchi M, Yu D, Hirayama R, Ninomiya Y, Sekine E, Kubota N, et al. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Biochem Biophys Res Commun 2006; 351:658 - 663; PMID: 17083915; http://dx.doi.org/10.1016/j.bbrc.2006.10.094
  • Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 2004; 5:429 - 441; PMID: 15144951; http://dx.doi.org/10.1016/S1535-6108(04)00115-1
  • Sharp S, Workman P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 2006; 95:323 - 348; PMID: 16860662; http://dx.doi.org/10.1016/S0065-230X(06)95009-X
  • Kim WY, Oh SH, Woo JK, Hong WK, Lee HY. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res 2009; 69:1624 - 1632; PMID: 19176399; http://dx.doi.org/10.1158/0008-5472.CAN-08-0505
  • Bisht KS, Bradbury CM, Mattson D, Kaushal A, Sowers A, Markovina S, et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 2003; 63:8984 - 8995; PMID: 14695217
  • Mazeron R, Anderson B, Supiot S, Paris F, Deutsch E. Current state of knowledge regarding the use of antiangiogenic agents with radiation therapy. Cancer Treat Rev 2011; 37:476 - 486; PMID: 21546163
  • Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, et al. Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 2000; 60:5565 - 5570; PMID: 11034104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.