823
Views
25
CrossRef citations to date
0
Altmetric
Research Paper

Mitochondria-targeted nitroxides exacerbate fluvastatin-mediated cytostatic and cytotoxic effects in breast cancer cells

, , , , , , , , & show all
Pages 707-717 | Received 06 May 2011, Accepted 22 Jun 2011, Published online: 15 Oct 2011

References

  • Kotamraju S, Williams CL, Kalyanaraman B. Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res 2007; 67:8973; PMID: 17671209; http://dx.doi.org/10.1158/0008-5472.CAN-07-0993
  • Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res 2006; 66:8707 - 8714; PMID: 16951186; http://dx.doi.org/10.1158/0008-5472.CAN05-4061
  • Mück A, Seeger H, Wallwiener D. Inhibitory effects of statins on the proliferation of human breast cancer cells. Int J Clin Pharmacol Ther 2004; 42:695 - 700; PMID: 15624286
  • Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K. Lovastatin-mediated G1 arrest is through inhibition of the proteosome, independent of hydroxy glutaryl-CoA reductase. Proc Natl Acad Sci USA 1999; 96:7797 - 7802
  • Cafforio P, Dammacco F, Gerone A, Sivestris F. Statins activate the mitochondrial pathway of apoptosis in human lympoblasts and myeloma cells. Carcinogenesis 2005; 26:883 - 891; PMID: 15705602; http://dx.doi.org/10.1093/carcin/bgi036
  • Rosenson RS. Pluripotent mechanisms of cardioprotection with HMG-CoA reductase inhibitor therapy. Am J Cardiovasc Drugs 2001; 1:411 - 420; PMID: 14728000; http://dx.doi.org/10.2165/00129784-200101060-00001
  • Laezza C, Malfitano AM, Proto MC, Esposito I, Gazzero P, Formisano P. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity and of Ras farnesylation mediate antitumor effects of anandamide in human breast cancer cells. Endocr Relat Cancer 2010; 17:495 - 503; PMID: 20304978; http://dx.doi.org/10.1677/ERC-10-0009
  • Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 2008; 68:5246 - 5256; PMID: 18593925; http://dx.doi.org/10.1158/0008-5472.CAN-07-6161
  • Laezza C, Fiorentino L, Pisanti S, Gazzerro P, Caragilia M, Portella G, et al. Lovastatin induces apoptosis of k-ras-transformed thyroid cells via inhibition of ras farnesylation and by modulating redox state. J Mol Med 2008; 86:1341 - 1351; PMID: 18779944; http://dx.doi.org/10.1007/s00109-008-0396-1
  • McAnally JA, Gupta J, Sodhani S, Bravo L, Mo H. Tocotrienols potentiate lovastatin-mediated growth suppression in vitro and in vivo. Exp Biol Med (Maywood) 2007; 232:523 - 531; PMID: 17392488
  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82:47 - 95; PMID: 11773609
  • Doroshow JH. Redox modulation of chemotherapy-induced tumor cell killing and normal tissue toxicity. J Natl Cancer Inst 2006; 98:223 - 225; PMID: 16478735; http://dx.doi.org/10.1093/jnci/djj065
  • Zhang Y, Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NFkappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res 2004; 64:1902 - 1905; PMID: 15026320; http://dx.doi.org/10.1158/0008-5472.CAN-03-3361
  • Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 2006; 8:1791 - 1806; PMID: 16987032; http://dx.doi.org/10.1089/ars.2006.8.1791
  • Kim DM, Koo SY, Jeon K, Kim MH, Lee J, Hong CY, et al. Rapid induction of apoptosis by combination of flavopiridol and tumor necrosis factor (TNF) alpha or TNF-related apoptosis-inducing ligand in human cancer cell lines. Cancer Res 2003; 63:621 - 626; PMID: 12566305
  • Liu M, Ju X, Willmarth NE, Casimiro MC, Ojeifo J, Sakamaki T, et al. Nuclear factor-kappaB enhances ErbB2-induced mammary tumorigenesis and neoangiogenesis in vivo. Am J Pathol 2009; 174:1910 - 1920; PMID: 19349372; http://dx.doi.org/10.2353/ajpath.2009.080706
  • Benoit V, Chariot A, Delacroix L, Deregowski V, Jacobs N, Merville MP, et al. Caspase-8-dependent HER-2 cleavage in response to tumor necrosis factor alpha stimulation is counteracted by nuclear factor kappaB through c-FLIP-L expression. Cancer Res 2004; 64:2684 - 2691; PMID: 15087380; http://dx.doi.org/10.1158/0008-5472.CAN-03-2914
  • Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA. TKs5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2009; 2:53; PMID: 19318623; http://dx.doi.org/10.1126/scisignal.2000368
  • Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006; 25:695 - 705; PMID: 17160708; http://dx.doi.org/10.1007/s10555-006-9037-8
  • Zhang Y, Zhao W, Zhang HJ, Domann FE, Oberley LW. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res 2002; 62:1205 - 1212; PMID: 11861405
  • Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 2004; 64:3580 - 3585; PMID: 15150115; http://dx.doi.org/10.1158/0008-5472.CAN-03-3909
  • Arnold RS, He J, Remo A, Ritsick D, Yin-Goen Q, Lambeth JD, et al. Nox1 expression determines reactive oxygen and modulates c-fos-induced growth factor, interleukin-8 and Cav-1. Am J Pathol 2007; 171:2021 - 2032; PMID: 18055552; http://dx.doi.org/10.2353/ajpath.2007.061144
  • Hu Y, Rosen DG, Zhao Y, Feng L, Yang G, Liu J, et al. Mitochondrial manganese superoxide dismutase expression in ovarian cancer: Role in proliferation and response to oxidative stress. J Biol Chem 2005; 280:39485 - 39492; PMID: 16179351; http://dx.doi.org/10.1074/jbc.M503296200
  • Desouki MM, Kulawiec M, Bansal S, Das GM, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther 2005; 4:1367 - 1373; PMID: 16294028; http://dx.doi.org/10.4161/cbt.4.12.2233
  • Modica-Napolitano JS, Singh KK. Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med 2002; 4:1 - 19; PMID: 14987393
  • Krishna MC, Russo A, Mitchell JB, Goldstein S, Dafni H, Samuni A. Do nitroxide antioxidants act as scavengers of O2 or as SOD mimics?. J Biol Chem 1996; 271:26026 - 26031; PMID: 8824242; http://dx.doi.org/10.1074/jbc.271.42.26026
  • Dhanasekaran A, Kotamraju S, Karunakaran C, Kalivendi SV, Thomas S, Joseph J, et al. Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med 2005; 39:567 - 583; PMID: 16085176; http://dx.doi.org/10.1016/j.freeradbiomed.2005.04.016
  • Suy S, Mitchell JB, Ehleiter D, Haimovitz-Friedman A, Kasid U. Nitroxides tempol and tempo induce divergent signal transduction pathways in MDA-MB 231 breast cancer cells. J Biol Chem 1998; 273:17871 - 17878; PMID: 9651392; http://dx.doi.org/10.1074/jbc.273.28.17871
  • Adamovic T, McAllister D, Rowe JJ, Wang T, Jacob HJ, Sugg SL. Genetic mapping of mammary tumor traits to rat chromosome 10 using a novel panel of consomic rats. Cancer Genet Cytogenet 2008; 186:41 - 48; PMID: 18786441; http://dx.doi.org/10.1016/j.cancergencyto.2008.05.014
  • Tew GW, Lorimer EL, Berg TJ, Zhi H, Li R, Williams CL. SmgGDS regulates cell proliferation, migration, and NFkappaB transcriptional activity in non-small cell lung carcinoma. J Biol Chem 2008; 283:963 - 976; PMID: 17951244; http://dx.doi.org/10.1074/jbc.M707526200
  • Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 2008; 1777:1028 - 1031
  • Mollinedo F, de la Iglesia-Vicente J, Gajate C, Estella-Hermoso de Mendoza A, Villa-Pulgarin JA, de Frias M, et al. In vitro and in vivo selective antitumor activity of edelfosine against mantle cell lymphoma and chronic lymphocytic leukemia involving lipid rafts. Clin Cancer Res 2010; 16:2046 - 2054; PMID: 20233887; http://dx.doi.org/10.1158/1078-0432.CCR-09-2456
  • Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, et al. Mitochondrial dysfunction in SOD1G93 A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 2008; 28:4115 - 4122; PMID: 18417691; http://dx.doi.org/10.1523/JNEUROSCI.5308-07.2008
  • Chen Q, Espey MG, Krishna MC, Mitchell JB, Corpe CP, Buettner GR, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 2005; 102:13604 - 13609; PMID: 16157892; http://dx.doi.org/10.1073/pnas.0506390102
  • Cauley JA, McTiernan A, Rodabough RJ, LaCroix A, Bauer DC, Margolis KL, et al. Statin use and breast cancer: Prospective results from the Women's Health Initiative. J Natl Cancer Inst 2006; 98:700 - 707; PMID: 16705124; http://dx.doi.org/10.1093/jnci/djj188
  • Prowell TM, Stearns V, Trock B. Lipophilic statins merit additional study for breast cancer chemoprevention. J Clin Oncol 2006; 24:2128 - 2129; PMID: 16648517; http://dx.doi.org/10.1200/JCO.2005.05.1649
  • Bonovas S, Filioussi K, Tasvaris N, Sitaras NM. Use of statins and breast cancer: A meta-analysis of seven randomized clinical trials and nine observational studies. J Clin Oncol 2005; 23:8606 - 8612; PMID: 16260694; http://dx.doi.org/10.1200/JCO.2005.02.7045
  • Lubet RA, Boring D, Steele VE, Ruppert JM, Juliana MM, Grubbs CJ. Lack of efficacy of the statins atorvastatin and lovastatin in rodent mammary carcinogenesis. Cancer Prev Res (Phila) 2009; 2:161 - 167; PMID: 19196723; http://dx.doi.org/10.1158/1940-6207.CAPR08-0134
  • Romieu-Mourez R, Landesman-Bollag E, Seldin DC, Traish AM, Mercurio F, Sonenshein GE. Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-kappaB in breast cancer. Cancer Res 2001; 61:3810 - 3818; PMID: 11325857
  • El-Guendy N, Zhao Y, Gurumurthy S, Burikhanov R, Rangnekar VM. Identification of a unique core domain of par-4 sufficient for selective apoptosis induction in cancer cells. Mol Cell Biol 2003; 23:5516 - 5525; PMID: 12897127; http://dx.doi.org/10.1128/MCB.23.16.551625.2003
  • Sanyal U, Chatterjee RS, Das SK, Chakraborti SK. Alkylphosphonium salts as a new class of antitumor agents. Neoplasma 1984; 31:149 - 155; PMID: 6717684
  • Manetta A, Gamboa G, Nasseri A, Podnos YD, Emma D, Dorion G, et al. Novel phosphonium salts display in vitro and in vivo cytotoxic activity against human ovarian cancer cell lines. Gynecol Oncol 1996; 60:203 - 212; PMID: 8631539; http://dx.doi.org/10.1006/gyno.1996.0026
  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 2010; 107:8788 - 8793; PMID: 20421486; http://dx.doi.org/10.1073/pnas.1003428107
  • Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26:3227 - 3239; PMID: 17496918; http://dx.doi.org/10.1038/sj.onc.1210414
  • Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, et al. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinine. J Biol Chem 2010; 285:34447 - 34459; PMID: 20805228; http://dx.doi.org/10.1074/jbc.M110.133579
  • Klawitter J, Shokati T, Moll V, Christians U, Klawitter J. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res 2010; 12:16; PMID: 20205716; http://dx.doi.org/10.1186/bcr2485
  • Kurtoglu M, Lampidis TJ. From delocalized lipophilic cations to hypoxia: blocking tumor cell mitochondrial function leads to therapeutic gain with glycolytic inhibitors. Mol Nutr Food Res 2009; 53:68 - 75; PMID: 19072739; http://dx.doi.org/10.1002/mnfr.200700457
  • Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 2010; 15:360 - 371; PMID: 20413641; http://dx.doi.org/10.1634/theoncologist.2009-S104
  • Azzolin L, Basso E, Argenton F, Bernardi P. Mitochondrial Ca2+ transport and permeability transition in zebra fish (Danio rerio). Biochim Biophys Acta 2010; 1797:1775 - 1779
  • Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1:2315 - 2319; PMID: 17406473; http://dx.doi.org/10.1038/nprot.2006.339

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.