527
Views
10
CrossRef citations to date
0
Altmetric
Review

Selective tumor killing based on specific DNA-damage response deficiencies

&
Pages 239-246 | Received 28 Sep 2011, Accepted 02 Dec 2011, Published online: 01 Mar 2012

References

  • Featherstone C, Jackson SP. DNA double-strand break repair. Curr Biol 1999; 9:759 - 761; PMID: 10531043; http://dx.doi.org/10.1016/S0960-9822(00)80005-6
  • Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 2001; 15:2177 - 2196; PMID: 11544175; http://dx.doi.org/10.1101/gad.914401
  • D'Amours D, Jackson SP. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat Rev Mol Cell Biol 2002; 3:317 - 327; PMID: 11988766; http://dx.doi.org/10.1038/nrm805
  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421:499 - 506; PMID: 12556884; http://dx.doi.org/10.1038/nature01368
  • Petrini JH, Stracker TH. The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 2003; 13:458 - 462; PMID: 12946624; http://dx.doi.org/10.1016/S0962-8924(03)00170-3
  • Ball LG, Xiao W. Molecular basis of ataxia telangiectasia and related diseases. Acta Pharmacol Sin 2005; 26:897 - 907; PMID: 16038621; http://dx.doi.org/10.1111/j.1745-7254.2005.00165.x
  • Stokes MP, Rush J, Macneill J, Ren JM, Sprott K, Nardone J, et al. Profiling of UV-induced ATM/ATR signaling pathways. Proc Natl Acad Sci USA 2007; 104:19855 - 19860; PMID: 18077418; http://dx.doi.org/10.1073/pnas.0707579104
  • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542 - 1548; PMID: 12791985; http://dx.doi.org/10.1126/science.1083430
  • Rouse J, Jackson SP. Interfaces between the detection, signaling and repair of DNA damage. Science 2002; 297:547 - 551; PMID: 12142523; http://dx.doi.org/10.1126/science.1074740
  • Kondo T, Wakayama T, Naiki T, Matsumoto K, Sugimoto K. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 2001; 294:867 - 870; PMID: 11679674; http://dx.doi.org/10.1126/science.1063827
  • Majka J, Binz SK, Wold MS, Burgers PM. Replication protein A directs loading of the DNA damage checkpoint clamp to 5′-DNA junctions. J Biol Chem 2006; 281:27855 - 27861; PMID: 16864589; http://dx.doi.org/10.1074/jbc.M605176200
  • Lee J, Kumagai A, Dunphy WG. The Rad9-Hus1-Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR. J Biol Chem 2007; 282:28036 - 28044; PMID: 17636252; http://dx.doi.org/10.1074/jbc.M704635200
  • Delacroix S, Wagner JM, Kobayashi M, Yamamoto K, Karnitz LM. The Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. Genes Dev 2007; 21:1472 - 1477; PMID: 17575048; http://dx.doi.org/10.1101/gad.1547007
  • Warmerdam DO, Kanaar R. Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 2010; 704:2 - 11; PMID: 20006736; http://dx.doi.org/10.1016/j.mrrev.2009.12.001
  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000; 14:1448 - 1459; PMID: 10859164
  • Gatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, et al. Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation. J Bio Chem 2003; 278:14806 - 14811; PMID: 12588868; http://dx.doi.org/10.1074/jbc.M210862200
  • Sørensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 2003; 3:247 - 258; PMID: 12676583; http://dx.doi.org/10.1016/S1535-6108(03)00048-5
  • Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 2002; 21:5911 - 5920; PMID: 12411508; http://dx.doi.org/10.1093/emboj/cdf567
  • Smits VA, Reaper PM, Jackson SP. Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Curr Biol 2006; 16:150 - 159; PMID: 16360315; http://dx.doi.org/10.1016/j.cub.2005.11.066
  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410:842 - 847; PMID: 11298456; http://dx.doi.org/10.1038/35071124
  • Jin P, Gu Y, Morgan DO. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 1996; 134:963 - 970; PMID: 8769420; http://dx.doi.org/10.1083/jcb.134.4.963
  • Zhou BB, Bartek J. Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 2004; 4:216 - 225; PMID: 14993903; http://dx.doi.org/10.1038/nrc1296
  • Rodier F, Campisi J, Bhaumik D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res 2007; 35:7475 - 7484; PMID: 17942417; http://dx.doi.org/10.1093/nar/gkm744
  • Stevens C, Smith L, La Thangue NB. Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 2003; 5:401 - 409; PMID: 12717439; http://dx.doi.org/10.1038/ncb974
  • Rogoff HA, Pickering MT, Frame FM, Debatis ME, Sanchez Y, Jones S, et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm/Nbs1/Chk2. Mol Cell Biol 2004; 24:2968 - 2977; PMID: 15024084; http://dx.doi.org/10.1128/MCB.24.7.2968-77.2004
  • Powers JT, Hong S, Mayhew CN, Rogers PM, Knudsen ES, Johnson DG. E2F1 uses the ATM signaling pathway to induce p53 and Chk2 phosphorylation and apoptosis. Mol Cancer Res 2004; 2:203 - 214; PMID: 15140942
  • Bahassi EM, Ovesen JL, Riesenberg AL, Bernstein WZ, Hasty PE, Stambrook PJ. The checkpoint kinases Chk1 and Chk2 regulate the functional associations between hBRCA2 and Rad51 in response to DNA damage. Oncogene 2008; 27:3977 - 3985; PMID: 18317453; http://dx.doi.org/10.1038/onc.2008.17
  • Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Bio Chem 1997; 272:31941 - 31944; PMID: 9405383; http://dx.doi.org/10.1074/jbc.272.51.31941
  • Chen PL, Chen CF, Chen Y, Xiao J, Sharp ZD, Lee WH. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA 1998; 95:5287 - 5292; PMID: 9560268; http://dx.doi.org/10.1073/pnas.95.9.5287
  • West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol 2003; 4:435 - 445; PMID: 12778123; http://dx.doi.org/10.1038/nrm1127
  • Rai R, Dai H, Multani AS, Li K, Chin K, Gray J, et al. BRIT1 regulates early DNA damage response, chromosomal integrity and cancer. Cancer Cell 2006; 10:145 - 157; PMID: 16872911; http://dx.doi.org/10.1016/j.ccr.2006.07.002
  • Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007; 26:7773 - 7779; PMID: 18066090; http://dx.doi.org/10.1038/sj.onc.1210881
  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, et al. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999; 59:4375 - 4382; PMID: 10485486
  • Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, et al. Differential sensitivity of p53(−) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 1995; 55:1643 - 1648; PMID: 7712468
  • Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT. Inhibition of phosphoinositide-3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res 1998; 58:4375 - 4382; PMID: 9766667
  • Izzard RA, Jackson SP, Smith GC. Competitive and noncompetitive inhibition of the DNA-dependent protein kinase. Cancer Res 1999; 59:2581 - 2586; PMID: 10363977
  • Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 2004; 64:9152 - 9159; PMID: 15604286; http://dx.doi.org/10.1158/0008-5472.CAN-04-2727
  • Li Y, Yang DQ. The ATM inhibitor KU-55933 suppresses cell proliferation and induces apoptosis by blocking Akt in cancer cells with overactivated Akt. Mol Cancer Ther 2010; 9:113 - 125; PMID: 20053781; http://dx.doi.org/10.1158/1535-7163.MCT-08-1189
  • Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14:381 - 395; PMID: 11882383; http://dx.doi.org/10.1016/S0898-6568(01)00271-6
  • Kennedy RD, Chen CC, Stuckert P, Archila EM, De la Vega MA, Moreau LA, et al. Fanconi anemia pathway-deficient tumor cells are hypersensitive to inhibition of ataxia telangiectasia mutated. J Clin Invest 2007; 117:1440 - 1449; PMID: 17431503; http://dx.doi.org/10.1172/JCI31245
  • Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol Cell 2004; 15:607 - 620; PMID: 15327776; http://dx.doi.org/10.1016/j.molcel.2004.08.009
  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis and proteins locating to gamma-H2AX foci. Mol Cell 2004; 16:715 - 724; PMID: 15574327; http://dx.doi.org/10.1016/j.molcel.2004.10.029
  • Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S. The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 2000; 19:463 - 471; PMID: 10654944; http://dx.doi.org/10.1093/emboj/19.3.463
  • Landais I, Hiddingh S, McCarroll M, Yang C, Sun A, Turker MS, et al. Monoketone analogs of curcumin, a new class of Fanconi anemia pathway inhibitors. Mol Cancer 2009; 8:133; PMID: 20043851; http://dx.doi.org/10.1186/1476-4598-8-133
  • Nishida H, Tatewaki N, Nakajima Y, Magara T, Ko KM, Hamamori Y, et al. Inhibition of ATR protein kinase activity by schisandrin B in DNA damage response. Nucleic Acids Res 2009; 37:5678 - 5689; PMID: 19625493; http://dx.doi.org/10.1093/nar/gkp593
  • Liu GT. Pharmacological actions and clinical use of fructus schizandrae. Chin Med J (Engl) 1989; 102:740 - 749; PMID: 2517053
  • Ko KM, Mak DH, Chiu PY, Poon MK. Pharmacological basis of ‘Yang-invigoration’ in Chinese medicine. Trends Pharmacol Sci 2004; 25:3 - 6; PMID: 14723971; http://dx.doi.org/10.1016/j.tips.2003.11.002
  • Li L, Lu Q, Shen Y, Hu X. Schisandrin B enhances doxorubicin-induced apoptosis of cancer cells but not normal cells. Biochem Pharmacol 2006; 71:584 - 595; PMID: 16405922; http://dx.doi.org/10.1016/j.bcp.2005.11.026
  • Fang Y, Tsao CC, Goodman BK, Furumai R, Tirado CA, Abraham RT, et al. ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background. EMBO J 2004; 23:3164 - 3174; PMID: 15282542; http://dx.doi.org/10.1038/sj.emboj.7600315
  • Jardim MJ, Wang Q, Furumai R, Wakeman T, Goodman BK, Wang XF. Reduced ATR or Chk1 expression leads to chromosome instability and chemosensitization of mismatch repair-deficient colorectal cancer cells. Mol Biol Cell 2009; 20:3801 - 3809; PMID: 19570909; http://dx.doi.org/10.1091/mbc.E09-04-0303
  • Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 2003; 106:66 - 73; PMID: 12794758; http://dx.doi.org/10.1002/ijc.11176
  • Hewish M, Lord CJ, Martin SA, Cunningham D, Ashworth A. Mismatch repair deficient colorectal cancer in the era of personalized treatment. Nat Rev Clin Oncol 2010; 7:197 - 208; PMID: 20177404; http://dx.doi.org/10.1038/nrclinonc.2010.18
  • Peasland A, Wang LZ, Rowling E, Kyle S, Chen T, Hopkins A, et al. Identification and evaluation of a potent novel ATR inhibitor, NU6027, in breast and ovarian cancer cell lines. Br J Cancer 2011; 105:372 - 381; PMID: 21730979; http://dx.doi.org/10.1038/bjc.2011.243
  • Reaper PM, Griffiths MR, Long JM, Charrier JD, Maccormick S, Charlton PA, et al. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat Chem Biol 2011; 7:428 - 430; PMID: 21490603; http://dx.doi.org/10.1038/nchembio.573
  • Toledo LI, Murga M, Zur R, Soria R, Rodriguez A, Martinez S, et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat Struct Mol Biol 2011; 18:721 - 727; PMID: 21552262; http://dx.doi.org/10.1038/nsmb.2076
  • Konstantinidou G, Bey EA, Rabellino A, Schuster K, Maira MS, Gazdar AF, et al. Dual phosphoinositide-3-kinase/mammalian target of rapamycin blockade is an effective radiosensitizing strategy for the treatment of non-small cell lung cancer harboring K-RAS mutations. Cancer Res 2009; 69:7644 - 7652; PMID: 19789349; http://dx.doi.org/10.1158/0008-5472.CAN-09-0823
  • Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC, et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 2010; 70:9693 - 9702; PMID: 21098704; http://dx.doi.org/10.1158/0008-5472.CAN-10-2286
  • Janetka JW, Ashwell S, Zabludoff S, Lyne P. Inhibitors of checkpoint kinases: from discovery to the clinic. Curr Opin Drug Discov Devel 2007; 10:473 - 486; PMID: 17659489
  • Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 2008; 7:2955 - 2966; PMID: 18790776; http://dx.doi.org/10.1158/1535-7163.MCT-08-0492
  • Petersen L, Hasvold G, Lukas J, Bartek J, Syljuasen RG. p53-dependent G(1) arrest in 1st or 2nd cell cycle may protect human cancer cells from cell death after treatment with ionizing radiation and Chk1 inhibitors. Cell Prolif 2010; 43:365 - 371; PMID: 20590661; http://dx.doi.org/10.1111/j.1365-2184.2010.00685.x
  • Shao RG, Zhen YS. Enediyne anticancer antibiotic lidamycin: chemistry, biology and pharmacology. Anticancer Agents Med Chem 2008; 8:123 - 131; PMID: 18288918; http://dx.doi.org/10.2174/187152008783497055
  • Pan Y, Ren KH, He HW, Shao RG. Knockdown of Chk1 sensitizes human colon carcinoma HCT116 cells in a p53-dependent manner to lidamycin through abrogation of a G2/M checkpoint and induction of apoptosis. Cancer Biol Ther 2009; 8:1559 - 1566; PMID: 19502782; http://dx.doi.org/10.4161/cbt.8.16.8955
  • Morgan MA, Parsels LA, Parsels JD, Lawrence TS, Maybaum J. The relationship of premature mitosis to cytotoxicity in response to checkpoint abrogation and antimetabolite treatment. Cell Cycle 2006; 5:1983 - 1988; PMID: 16931916; http://dx.doi.org/10.4161/cc.5.17.3184
  • Kortmansky J, Shah MA, Kaubisch A, Weyerbacher A, Yi S, Tong W, et al. Phase I trial of the cyclin-dependent kinase inhibitor and protein kinase C inhibitor 7-hydroxystaurosporine in combination with Fluorouracil in patients with advanced solid tumors. J Clin Oncol 2005; 23:1875 - 1884; PMID: 15699481; http://dx.doi.org/10.1200/JCO.2005.03.116
  • Fuse E, Kuwabara T, Sparreboom A, Sausville EA, Figg WD. Review of UCN-01 development: a lesson in the importance of clinical pharmacology. J Clin Pharmacol 2005; 45:394 - 403; PMID: 15778420; http://dx.doi.org/10.1177/0091270005274549
  • Guzi TJ, Paruch K, Dwyer MP, Labroli M, Shanahan F, Davis N, et al. Targeting the Replication Checkpoint Using SCH 900776, a Potent and Functionally Selective CHK1 Inhibitor Identified via High Content Screening. Mol Cancer Ther 2011; 10:591 - 602; PMID: 21321066; http://dx.doi.org/10.1158/1535-7163.MCT-10-0928
  • Ashwell S, Zabludoff S. DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 2008; 14:4032 - 4037; PMID: 18593978; http://dx.doi.org/10.1158/1078-0432.CCR-07-5138
  • Bucher N, Britten CD. G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer 2008; 98:523 - 528; PMID: 18231106; http://dx.doi.org/10.1038/sj.bjc.6604208
  • Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 2010; 70:4972 - 4981; PMID: 20501833; http://dx.doi.org/10.1158/0008-5472.CAN-09-3573
  • Kawabe T. G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 2004; 3:513 - 519; PMID: 15078995
  • Xiao Z, Xue J, Sowin TJ, Zhang H. Differential roles of checkpoint kinase 1, checkpoint kinase 2 and mitogen-activated protein kinase-activated protein kinase 2 in mediating DNA damage-induced cell cycle arrest: implications for cancer therapy. Mol Cancer Ther 2006; 5:1935 - 1943; PMID: 16928813; http://dx.doi.org/10.1158/1535-7163.MCT-06-0077
  • Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, et al. The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 2004; 23:4353 - 4361; PMID: 15048074; http://dx.doi.org/10.1038/sj.onc.1207573
  • Ghosh JC, Dohi T, Raskett CM, Kowalik TF, Altieri DC. Activated checkpoint kinase 2 provides a survival signal for tumor cells. Cancer Res 2006; 66:11576 - 11579; PMID: 17178848; http://dx.doi.org/10.1158/0008-5472.CAN-06-3095
  • Stolz A, Ertych N, Kienitz A, Vogel C, Schneider V, Fritz B, et al. The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol 2010; 12:492 - 499; PMID: 20364141; http://dx.doi.org/10.1038/ncb2051
  • MacLaren A, Slavin D, McGowan CH. Chk2 protects against radiation-induced genomic instability. Radiat Res 2009; 172:463 - 472; PMID: 19772467; http://dx.doi.org/10.1667/RR1603.1
  • Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S, et al. Chk2-deficient mice exhibit radio-resistance and defective p53-mediated transcription. EMBO J 2002; 21:5195 - 5205; PMID: 12356735; http://dx.doi.org/10.1093/emboj/cdf506
  • Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J, et al. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med Chem 2005; 48:1873 - 1885; PMID: 15771432; http://dx.doi.org/10.1021/jm0495935
  • Carlessi L, Buscemi G, Larson G, Hong Z, Wu JZ, Delia D. Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 2007; 6:935 - 944; PMID: 17363488; http://dx.doi.org/10.1158/1535-7163.MCT-06-0567
  • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362:709 - 715; PMID: 8469282; http://dx.doi.org/10.1038/362709a0
  • Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res 2007; 13:1383 - 1388; PMID: 17332279; http://dx.doi.org/10.1158/1078-0432.CCR-06-2260
  • Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH, Canan-Koch S, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 2004; 96:56 - 67; PMID: 14709739; http://dx.doi.org/10.1093/jnci/djh005
  • Miknyoczki SJ, Jones-Bolin S, Pritchard S, Hunter K, Zhao H, Wan W, et al. Chemopotentiation of temozolomide, irinotecan and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol Cancer Ther 2003; 2:371 - 382; PMID: 12700281
  • Miknyoczki S, Chang H, Grobelny J, Pritchard S, Worrell C, McGann N, et al. The selective poly(ADP-ribose) polymerase-1(2) inhibitor, CEP-8983, increases the sensitivity of chemoresistant tumor cells to temozolomide and irinotecan but does not potentiate myelotoxicity. Mol Cancer Ther 2007; 6:2290 - 2302; PMID: 17699724; http://dx.doi.org/10.1158/15357163.MCT-07-0062
  • Plummer R, Lorigan P, Evans J, Steven N, Middleton M, Wilson R, et al. First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignant melanoma (MM). J Clin Oncol 2006; 24:8013
  • Plummer R, Middleton M, Wilson R, Jones C, Evans J, Robson L, et al. First in human phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. J Clin Oncol 2005; 23:3065
  • Penning TD. Small-molecule PARP modulators—current status and future therapeutic potential. Curr Opin Drug Discov Devel 2010; 13:577 - 586; PMID: 20812149
  • Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434:913 - 917; PMID: 15829966; http://dx.doi.org/10.1038/nature03443
  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434:917 - 921; PMID: 15829967; http://dx.doi.org/10.1038/nature03445
  • Martin SA, Lord CJ, Ashworth A. DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev 2008; 18:80 - 86; PMID: 18343102; http://dx.doi.org/10.1016/j.gde.2008.01.016
  • Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 2009; 1:315 - 322; PMID: 20049735; http://dx.doi.org/10.1002/emmm.200900041
  • Sourisseau T, Maniotis D, McCarthy A, Tang C, Lord CJ, Ashworth A, et al. Aurora-A expressing tumour cells are deficient for homology-directed DNA double strand-break repair and sensitive to PARP inhibition. EMBO Mol Med 2010; 2:130 - 142; PMID: 20373286; http://dx.doi.org/10.1002/emmm.201000068
  • Williamson CT, Muzik H, Turhan AG, Zamo A, O'Connor MJ, Bebb DG, et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 2010; 9:347 - 357; PMID: 20124459; http://dx.doi.org/10.1158/1535-7163.MCT-09-0872
  • Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 2010; 116:4578 - 4587; PMID: 20739657; http://dx.doi.org/10.1182/blood-2010-01-265769
  • Patel AG, Sarkaria JN, Kaufmann SH. Nonhomologous end joining drives poly(ADP-ribose) polymerase (PARP) inhibitor lethality in homologous recombination-deficient cells. Proc Natl Acad Sci USA 2011; 108:3406 - 3411; PMID: 21300883; http://dx.doi.org/10.1073/pnas.1013715108
  • Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376:245 - 251; PMID: 20609468; http://dx.doi.org/10.1016/S0140-6736(10)60893-8
  • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376:235 - 244; PMID: 20609467; http://dx.doi.org/10.1016/S0140-6736(10)60892-6
  • Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C, et al. Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J Med Chem 2009; 52:7170 - 7185; PMID: 19873981; http://dx.doi.org/10.1021/jm901188v
  • Löser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther 2010; 9:1775 - 1787; PMID: 20530711; http://dx.doi.org/10.1158/1535-7163.MCT-09-1027
  • Maxmen A. Beyond PARP inhibitors: agents in pipelines target DNA repair mechanisms. J Natl Cancer Inst 2010; 102:1110 - 1111; PMID: 20668266; http://dx.doi.org/10.1093/jnci/djq294
  • Nowsheen S, Bonner JA, Lobuglio AF, Trummell H, Whitley AC, Dobelbower MC, et al. Cetuximab augments cytotoxicity with poly (adp-ribose) polymerase inhibition in head and neck cancer. PLoS ONE 2011; 6:24148; PMID: 21912620; http://dx.doi.org/10.1371/journal.pone.0024148
  • Kummar S, Chen A, Ji J, Zhang Y, Reid JM, Ames M, et al. Phase I Study of PARP Inhibitor ABT-888 in Combination with Topotecan in Adults with Refractory Solid Tumors and Lymphomas. Cancer Res 2011; 71:5626 - 5634; PMID: 21795476; http://dx.doi.org/10.1158/0008-5472.CAN-11-1227
  • Nowsheen S, Bonner JA, Yang ES. The poly(ADP-Ribose) polymerase inhibitor ABT-888 reduces radiation-induced nuclear EGFR and augments head and neck tumor response to radiotherapy. Radiother Oncol 2011; 99:331 - 338; PMID: 21719137; http://dx.doi.org/10.1016/j.radonc.2011.05.084
  • Shibata H, Miuma S, Saldivar JC, Huebner K. Response of subtype-specific human breast cancer-derived cells to poly(ADP-ribose) polymerase and checkpoint kinase 1 inhibition. Cancer Sci 2011; 102:1882 - 1888; PMID: 21707865; http://dx.doi.org/10.1111/j.1349-7006.2011.02016.x
  • Huehls AM, Wagner JM, Huntoon CJ, Geng L, Erlichman C, Patel AG, et al. Poly(ADP-Ribose) polymerase inhibition synergizes with 5-fluorodeoxyuridine but not 5-fluorouracil in ovarian cancer cells. Cancer Res 2011; 71:4944 - 4954; PMID: 21613406; http://dx.doi.org/10.1158/0008-5472.CAN-11-0814
  • Barreto-Andrade JC, Efimova EV, Mauceri HJ, Beckett MA, Sutton HG, Darga TE, et al. Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol Cancer Ther 2011; 10:1185 - 1193; PMID: 21571912; http://dx.doi.org/10.1158/1535-7163.MCT-11-0061
  • Kruse V, Rottey S, De Backer O, Van Belle S, Cocquyt V, Denys H. PARP inhibitors in oncology: a new synthetic lethal approach to cancer therapy. Acta Clin Belg 2011; 66:2 - 9; PMID: 21485757
  • Li X, Delzer J, Voorman R, de Morais SM, Lao Y. Disposition and drug-drug interaction potential of veliparib (ABT-888), a novel and potent inhibitor of poly(ADP-ribose) polymerase. Drug Metab Dispos 2011; 39:1161 - 1169; PMID: 21436403; http://dx.doi.org/10.1124/dmd.110.037820
  • Strimpakos AS, Syrigos KN, Saif MW. Translational research in pancreatic cancer. Highlights from the “2011 ASCO Gastrointestinal Cancers Symposium”. San Francisco, CA USA. January 20–22, 2011. JOP 2011; 12:120 - 122; PMID: 21386635
  • Tang JB, Svilar D, Trivedi RN, Wang XH, Goellner EM, Moore B, et al. N-methylpurine DNA glycosylase and DNA polymerase beta modulate BER inhibitor potentiation of glioma cells to temozolomide. Neurooncol 2011; 13:471 - 486; PMID: 21377995; http://dx.doi.org/10.1093/neuonc/nor011
  • Vilar E, Bartnik CM, Stenzel SL, Raskin L, Ahn J, Moreno V, et al. MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res 2011; 71:2632 - 2642; PMID: 21300766; http://dx.doi.org/10.1158/0008-5472.CAN-10-1120
  • Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res 2011; 39:3607 - 3620; PMID: 21227924; http://dx.doi.org/10.1093/nar/gkq1304
  • Pal SK, Childs BH, Pegram M. Triple negative breast cancer: unmet medical needs. Breast Cancer Res Treat 2011; 125:627 - 636; PMID: 21161370; http://dx.doi.org/10.1007/s10549-010-1293-1
  • Rowley R, Hudson J, Young PG. The wee1 protein kinase is required for radiation-induced mitotic delay. Nature 1992; 356:353 - 355; PMID: 1549179; http://dx.doi.org/10.1038/356353a0
  • Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 2004; 3:305 - 313; PMID: 14726685; http://dx.doi.org/10.4161/cbt.3.3.697
  • Hirai H, Iwasawa Y, Okada M, Arai T, Nishibata T, Kobayashi M, et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther 2009; 8:2992 - 3000; PMID: 19887545; http://dx.doi.org/10.1158/1535-7163.MCT-09-0463
  • Mizuarai S, Yamanaka K, Itadani H, Arai T, Nishibata T, Hirai H, et al. Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol Cancer 2009; 8:34; PMID: 19500427; http://dx.doi.org/10.1186/1476-4598-8-34
  • Stathis A, Oza A. Targeting Wee1-like protein kinase to treat cancer. Drug News Perspect 2010; 23:425 - 429; PMID: 20862394
  • Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T, et al. MK-1775, a Potent Wee1 Inhibitor, Synergizes with Gemcitabine to Achieve Tumor Regressions, Selectively in p53-Deficient Pancreatic Cancer Xenografts. Clin Cancer Res 2011; 17:2799 - 2806; PMID: 21389100; http://dx.doi.org/10.1158/1078-0432.CCR-10-2580
  • PosthumaDeBoer J, Wurdinger T, Graat HC, van Beusechem VW, Helder MN, van Royen BJ, et al. WEE1 inhibition sensitizes Osteosarcoma to Radiotherapy. BMC Cancer 2011; 11:156; PMID: 21529352; http://dx.doi.org/10.1186/1471-2407-11-156
  • Liang Y, Lin SY, Brunicardi FC, Goss J, Li K. DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 2009; 33:661 - 666; PMID: 19034564; http://dx.doi.org/10.1007/s00268-008-9840-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.