1,305
Views
23
CrossRef citations to date
0
Altmetric
Research Paper

Impaired CXCL4 expression in tumor-associated macrophages (TAMs) of ovarian cancers arising in endometriosis

, , , , , , , , & show all
Pages 671-680 | Received 14 Dec 2011, Accepted 20 Mar 2012, Published online: 01 Jun 2012

References

  • Giudice LC, Kao LC. Endometriosis. Lancet 2004; 364:1789 - 99; http://dx.doi.org/10.1016/S0140-6736(04)17403-5; PMID: 15541453
  • Matarese G, De Placido G, Nikas Y, Alviggi C. Pathogenesis of endometriosis: natural immunity dysfunction or autoimmune disease?. Trends Mol Med 2003; 9:223 - 8; http://dx.doi.org/10.1016/S1471-4914(03)00051-0; PMID: 12763528
  • Sainz de la Cuesta R, Eichhorn JH, Rice LW, Fuller AF Jr., Nikrui N, Goff BA. Histologic transformation of benign endometriosis to early epithelial ovarian cancer. Gynecol Oncol 1996; 60:238 - 44; http://dx.doi.org/10.1006/gyno.1996.0032; PMID: 8631545
  • Prefumo F, Todeschini F, Fulcheri E, Venturini PL. Epithelial abnormalities in cystic ovarian endometriosis. Gynecol Oncol 2002; 84:280 - 4; http://dx.doi.org/10.1006/gyno.2001.6529; PMID: 11812087
  • Stern RC, Dash R, Bentley RC, Snyder MJ, Haney AF, Robboy SJ. Malignancy in endometriosis: frequency and comparison of ovarian and extraovarian types. Int J Gynecol Pathol 2001; 20:133 - 9; http://dx.doi.org/10.1097/00004347-200104000-00004; PMID: 11293158
  • Sato N, Tsunoda H, Nishida M, Morishita Y, Takimoto Y, Kubo T, et al. Loss of heterozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endometrial cyst of the ovary: possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res 2000; 60:7052 - 6; PMID: 11156411
  • Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363:1532 - 43; http://dx.doi.org/10.1056/NEJMoa1008433; PMID: 20942669
  • Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16:53 - 65; http://dx.doi.org/10.1016/j.semcancer.2005.07.005; PMID: 16168663
  • Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55:237 - 45; http://dx.doi.org/10.1007/s00262-005-0048-z; PMID: 16047143
  • Vicari AP, Caux C, Trinchieri G. Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 2002; 12:33 - 42; http://dx.doi.org/10.1006/scbi.2001.0400; PMID: 11926410
  • Bernardini G, Ribatti D, Spinetti G, Morbidelli L, Ziche M, Santoni A, et al. Analysis of the role of chemokines in angiogenesis. J Immunol Methods 2003; 273:83 - 101; http://dx.doi.org/10.1016/S0022-1759(02)00420-9; PMID: 12535800
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860 - 7; http://dx.doi.org/10.1038/nature01322; PMID: 12490959
  • Vicari AP, Caux C. Chemokines in cancer. Cytokine Growth Factor Rev 2002; 13:143 - 54; http://dx.doi.org/10.1016/S1359-6101(01)00033-8; PMID: 11900990
  • Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, et al. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 2001; 107:53 - 63; http://dx.doi.org/10.1172/JCI9775; PMID: 11134180
  • Bikfalvi A. Recent developments in the inhibition of angiogenesis: examples from studies on platelet factor-4 and the VEGF/VEGFR system. Biochem Pharmacol 2004; 68:1017 - 21; http://dx.doi.org/10.1016/j.bcp.2004.05.030; PMID: 15313395
  • Sauty A, Colvin RA, Wagner L, Rochat S, Spertini F, Luster AD. CXCR3 internalization following T cell-endothelial cell contact: preferential role of IFN-inducible T cell alpha chemoattractant (CXCL11). J Immunol 2001; 167:7084 - 93; PMID: 11739530
  • Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998; 101:746 - 54; http://dx.doi.org/10.1172/JCI1422; PMID: 9466968
  • Romagnani P, Beltrame C, Annunziato F, Lasagni L, Luconi M, Galli G, et al. Role for interactions between IP-10/Mig and CXCR3 in proliferative glomerulonephritis. J Am Soc Nephrol 1999; 10:2518 - 26; PMID: 10589690
  • Kouroumalis A, Nibbs RJ, Aptel H, Wright KL, Kolios G, Ward SG. The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate G alpha i-independent signaling and actin responses in human intestinal myofibroblasts. J Immunol 2005; 175:5403 - 11; PMID: 16210647
  • Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM, et al. CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 2007; 67:3396 - 405; http://dx.doi.org/10.1158/0008-5472.CAN-06-3087; PMID: 17409450
  • Kawada K, Sonoshita M, Sakashita H, Takabayashi A, Yamaoka Y, Manabe T, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 2004; 64:4010 - 7; http://dx.doi.org/10.1158/0008-5472.CAN-03-1757; PMID: 15173015
  • Suyama T, Furuya M, Nishiyama M, Kasuya Y, Kimura S, Ichikawa T, et al. Up-regulation of the interferon gamma (IFN-gamma)-inducible chemokines IFN-inducible T-cell alpha chemoattractant and monokine induced by IFN-gamma and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer 2005; 103:258 - 67; http://dx.doi.org/10.1002/cncr.20747; PMID: 15578685
  • Furuya M, Suyama T, Usui H, Kasuya Y, Nishiyama M, Tanaka N, et al. Up-regulation of CXC chemokines and their receptors: implications for proinflammatory microenvironments of ovarian carcinomas and endometriosis. Hum Pathol 2007; 38:1676 - 87; http://dx.doi.org/10.1016/j.humpath.2007.03.023; PMID: 17707463
  • Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 2003; 197:1537 - 49; http://dx.doi.org/10.1084/jem.20021897; PMID: 12782716
  • Ehlert JE, Addison CA, Burdick MD, Kunkel SL, Strieter RM. Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. J Immunol 2004; 173:6234 - 40; PMID: 15528361
  • Perollet C, Han ZC, Savona C, Caen JP, Bikfalvi A. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization. Blood 1998; 91:3289 - 99; PMID: 9558385
  • Jouan V, Canron X, Alemany M, Caen JP, Quentin G, Plouet J, et al. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood 1999; 94:984 - 93; PMID: 10419890
  • von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007; 100:27 - 40; http://dx.doi.org/10.1161/01.RES.0000252802.25497.b7; PMID: 17204662
  • Lasagni L, Grepin R, Mazzinghi B, Lazzeri E, Meini C, Sagrinati C, et al. PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood 2007; 109:4127 - 34; http://dx.doi.org/10.1182/blood-2006-10-052035; PMID: 17218382
  • Pitsilos S, Hunt J, Mohler ER, Prabhakar AM, Poncz M, Dawicki J, et al. Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters. Thromb Haemost 2003; 90:1112 - 20; PMID: 14652645
  • Pervushina O, Scheuerer B, Reiling N, Behnke L, Schröder JM, Kasper B, et al. Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients. J Immunol 2004; 173:2060 - 7; PMID: 15265941
  • Kasper B, Winoto-Morbach S, Mittelstädt J, Brandt E, Schütze S, Petersen F. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1. Eur J Immunol 2010; 40:1162 - 73; http://dx.doi.org/10.1002/eji.200939703; PMID: 20104488
  • Petersen F, Bock L, Flad HD, Brandt E. A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation. J Immunol 1998; 161:4347 - 55; PMID: 9780212
  • Furuya M, Yoneyama T, Miyagi E, Tanaka R, Nagahama K, Miyagi Y, et al. Differential expression patterns of CXCR3 variants and corresponding CXC chemokines in clear cell ovarian cancers and endometriosis. Gynecol Oncol 2011; 122:648 - 55; http://dx.doi.org/10.1016/j.ygyno.2011.05.034; PMID: 21684584
  • Struyf S, Burdick MD, Proost P, Van Damme J, Strieter RM. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ Res 2004; 95:855 - 7; http://dx.doi.org/10.1161/01.RES.0000146674.38319.07; PMID: 15459074
  • Dubrac A, Quemener C, Lacazette E, Lopez F, Zanibellato C, Wu WG, et al. Functional divergence between 2 chemokines is conferred by single amino acid change. Blood 2010; 116:4703 - 11; http://dx.doi.org/10.1182/blood-2010-03-274852; PMID: 20688960
  • Gibbings D, Befus AD. CD4 and CD8: an inside-out coreceptor model for innate immune cells. J Leukoc Biol 2009; 86:251 - 9; http://dx.doi.org/10.1189/jlb.0109040; PMID: 19401396
  • Popovich PG, van Rooijen N, Hickey WF, Preidis G, McGaughy V. Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp Neurol 2003; 182:275 - 87; http://dx.doi.org/10.1016/S0014-4886(03)00120-1; PMID: 12895439
  • Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 2009; 86:1065 - 73; http://dx.doi.org/10.1189/jlb.0609385; PMID: 19741157
  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23:549 - 55; http://dx.doi.org/10.1016/S1471-4906(02)02302-5; PMID: 12401408
  • Obermair A, Speiser P, Reisenberger K, Ullrich R, Czerwenka K, Kaider A, et al. Influence of intratumoral basic fibroblast growth factor concentration on survival in ovarian cancer patients. Cancer Lett 1998; 130:69 - 76; http://dx.doi.org/10.1016/S0304-3835(98)00119-0; PMID: 9751258
  • Shen GH, Ghazizadeh M, Kawanami O, Shimizu H, Jin E, Araki T, et al. Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma. Br J Cancer 2000; 83:196 - 203; PMID: 10901370
  • Negus RP, Stamp GW, Relf MG, Burke F, Malik ST, Bernasconi S, et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest 1995; 95:2391 - 6; http://dx.doi.org/10.1172/JCI117933; PMID: 7738202
  • Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 2008; 267:271 - 85; http://dx.doi.org/10.1016/j.canlet.2008.03.018; PMID: 18439751
  • Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M, et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 2009; 125:1276 - 84; http://dx.doi.org/10.1002/ijc.24378; PMID: 19479998
  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942 - 9; http://dx.doi.org/10.1038/nm1093; PMID: 15322536