2,852
Views
121
CrossRef citations to date
0
Altmetric
Review

The human proton-coupled folate transporter

Biology and therapeutic applications to cancer

, , &
Pages 1355-1373 | Received 13 Aug 2012, Accepted 29 Aug 2012, Published online: 06 Sep 2012

References

  • Farber S, Cutler EC, Hawkins JW, Harrison JH, Peirce EC 2nd, Lenz GG. The Action of Pteroylglutamic Conjugates on Man. Science 1947; 106:619 - 21; http://dx.doi.org/10.1126/science.106.2764.619; PMID: 17831847
  • Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 1948; 238:787 - 93; http://dx.doi.org/10.1056/NEJM194806032382301; PMID: 18860765
  • Farber S. Some observations on the effect of folic acid antagonists on acute leukemia and other forms of incurable cancer. Blood 1949; 4:160 - 7; PMID: 18107667
  • Monahan BP, Allegra CJ. Antifolates. In: Chabner BA, Longo, D.L., ed. Cancer Chemotherapy and Biotherapy. Philadelphia, PA: Lippincott Williams and Wilkins, 2011:109-38.
  • Zhao R, Goldman ID. Resistance to antifolates. Oncogene 2003; 22:7431 - 57; http://dx.doi.org/10.1038/sj.onc.1206946; PMID: 14576850
  • Hazarika M, White RM, Johnson JR, Pazdur R. FDA drug approval summaries: pemetrexed (Alimta). Oncologist 2004; 9:482 - 8; http://dx.doi.org/10.1634/theoncologist.9-5-482; PMID: 15477632
  • Cohen MH, Justice R, Pazdur R. Approval summary: pemetrexed in the initial treatment of advanced/metastatic non-small cell lung cancer. Oncologist 2009; 14:930 - 5; http://dx.doi.org/10.1634/theoncologist.2009-0092; PMID: 19737998
  • Thompson CA. FDA approves pralatrexate for treatment of rare lymphoma. Am J Health Syst Pharm 2009; 66:1890; http://dx.doi.org/10.2146/news090080; PMID: 19850775
  • Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, et al. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 2005; 65:11721 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-05-2034; PMID: 16357184
  • Yang J, Vlashi E, Low P. Folate-linked drugs for the treatment of cancer and inflammatory diseases. Subcell Biochem 2012; 56:163 - 79; http://dx.doi.org/10.1007/978-94-007-2199-9_9; PMID: 22116699
  • Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, et al. Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier. J Med Chem 2012; 55:1758 - 70; http://dx.doi.org/10.1021/jm201688n; PMID: 22243528
  • Kugel Desmoulin S, Wang L, Hales E, Polin L, White K, Kushner J, et al. Therapeutic targeting of a novel 6-substituted pyrrolo [2,3-d]pyrimidine thienoyl antifolate to human solid tumors based on selective uptake by the proton-coupled folate transporter. Mol Pharmacol 2011; 80:1096 - 107; http://dx.doi.org/10.1124/mol.111.073833; PMID: 21940787
  • Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, et al. Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase. J Med Chem 2011; 54:7150 - 64; http://dx.doi.org/10.1021/jm200739e; PMID: 21879757
  • Desmoulin SK, Wang Y, Wu J, Stout M, Hou Z, Fulterer A, et al. Targeting the proton-coupled folate transporter for selective delivery of 6-substituted pyrrolo[2,3-d]pyrimidine antifolate inhibitors of de novo purine biosynthesis in the chemotherapy of solid tumors. Mol Pharmacol 2010; 78:577 - 87; http://dx.doi.org/10.1124/mol.110.065896; PMID: 20601456
  • Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, et al. Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry. J Med Chem 2010; 53:1306 - 18; http://dx.doi.org/10.1021/jm9015729; PMID: 20085328
  • Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, et al. Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry. J Med Chem 2009; 52:2940 - 51; http://dx.doi.org/10.1021/jm8011323; PMID: 19371039
  • Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, et al. Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity. J Med Chem 2008; 51:5052 - 63; http://dx.doi.org/10.1021/jm8003366; PMID: 18680275
  • Stokstad ELR. Historical Perspective on Key Advances in the Biochemistry and Physiology of Folates. In: Picciano MF, Stokstad, E.L.R., Spector, R., ed. Folic Acid Metabolism in Health and Disease. New York: Wiley-Liss, 1990:1-21.
  • Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 1989; 45:263 - 335; http://dx.doi.org/10.1016/S0083-6729(08)60397-0; PMID: 2688305
  • Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 2006; 9:227 - 46; http://dx.doi.org/10.1016/j.drup.2006.09.001; PMID: 17092765
  • Lu SC. S-Adenosylmethionine. Int J Biochem Cell Biol 2000; 32:391 - 5; http://dx.doi.org/10.1016/S1357-2725(99)00139-9; PMID: 10762064
  • Matherly LH, Hou Z, Deng Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev 2007; 26:111 - 28; http://dx.doi.org/10.1007/s10555-007-9046-2; PMID: 17334909
  • Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev 2004; 56:1067 - 84; http://dx.doi.org/10.1016/j.addr.2004.01.001; PMID: 15094207
  • Zhao R, Matherly LH, Goldman ID. Membrane transporters and folate homeostasis: intestinal absorption and transport into systemic compartments and tissues. Expert Rev Mol Med 2009; 11:e4; http://dx.doi.org/10.1017/S1462399409000969; PMID: 19173758
  • Zhao R, Goldman ID. The molecular identity and characterization of a Proton-coupled Folate Transporter--PCFT; biological ramifications and impact on the activity of pemetrexed. Cancer Metastasis Rev 2007; 26:129 - 39; http://dx.doi.org/10.1007/s10555-007-9047-1; PMID: 17340171
  • Visentin M, Chang MH, Romero MF, Zhao R, Goldman ID. Substrate- and pH-specific antifolate transport mediated by organic anion-transporting polypeptide 2B1 (OATP2B1-SLCO2B1). Mol Pharmacol 2012; 81:134 - 42; http://dx.doi.org/10.1124/mol.111.074823; PMID: 22021325
  • Wong SC, Zhang L, Proefke SA, Matherly LH. Effects of the loss of capacity for N-glycosylation on the transport activity and cellular localization of the human reduced folate carrier. Biochim Biophys Acta 1998; 1375:6 - 12; http://dx.doi.org/10.1016/S0005-2736(98)00118-7; PMID: 9767079
  • Hou Z, Matherly LH. Oligomeric structure of the human reduced folate carrier: identification of homo-oligomers and dominant-negative effects on carrier expression and function. J Biol Chem 2009; 284:3285 - 93; http://dx.doi.org/10.1074/jbc.M807206200; PMID: 19019821
  • Hou Z, Cherian C, Drews J, Wu J, Matherly LH. Identification of the minimal functional unit of the homo-oligomeric human reduced folate carrier. J Biol Chem 2010; 285:4732 - 40; http://dx.doi.org/10.1074/jbc.M109.086033; PMID: 20018840
  • Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011; 31:177 - 201; http://dx.doi.org/10.1146/annurev-nutr-072610-145133; PMID: 21568705
  • Whetstine JR, Flatley RM, Matherly LH. The human reduced folate carrier gene is ubiquitously and differentially expressed in normal human tissues: identification of seven non-coding exons and characterization of a novel promoter. Biochem J 2002; 367:629 - 40; http://dx.doi.org/10.1042/BJ20020512; PMID: 12144527
  • Wang Y, Zhao R, Russell RG, Goldman ID. Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochim Biophys Acta 2001; 1513:49 - 54; http://dx.doi.org/10.1016/S0005-2736(01)00340-6; PMID: 11427193
  • Zhao R, Russell RG, Wang Y, Liu L, Gao F, Kneitz B, et al. Rescue of embryonic lethality in reduced folate carrier-deficient mice by maternal folic acid supplementation reveals early neonatal failure of hematopoietic organs. J Biol Chem 2001; 276:10224 - 8; PMID: 11266438
  • Liu M, Ge Y, Cabelof DC, Aboukameel A, Heydari AR, Mohammad R, et al. Structure and regulation of the murine reduced folate carrier gene: identification of four noncoding exons and promoters and regulation by dietary folates. J Biol Chem 2005; 280:5588 - 97; http://dx.doi.org/10.1074/jbc.M412662200; PMID: 15579899
  • Rijnboutt S, Jansen G, Posthuma G, Hynes JB, Schornagel JH, Strous GJ. Endocytosis of GPI-linked membrane folate receptor-alpha. J Cell Biol 1996; 132:35 - 47; http://dx.doi.org/10.1083/jcb.132.1.35; PMID: 8567728
  • Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev 2004; 56:1099 - 109; http://dx.doi.org/10.1016/j.addr.2004.01.010; PMID: 15094209
  • Kamen BA, Wang MT, Streckfuss AJ, Peryea X, Anderson RG. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem 1988; 263:13602 - 9; PMID: 3417674
  • Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID. A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. J Biol Chem 2009; 284:4267 - 74; http://dx.doi.org/10.1074/jbc.M807665200; PMID: 19074442
  • Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ. Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 2002; 100:594 - 602; http://dx.doi.org/10.1182/blood.V100.2.594; PMID: 12091353
  • Chancy CD, Kekuda R, Huang W, Prasad PD, Kuhnel JM, Sirotnak FM, et al. Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. J Biol Chem 2000; 275:20676 - 84; http://dx.doi.org/10.1074/jbc.M002328200; PMID: 10787414
  • Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA. Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res 1992; 52:6708 - 11; PMID: 1330299
  • Reddy JA, Haneline LS, Srour EF, Antony AC, Clapp DW, Low PS. Expression and functional characterization of the beta-isoform of the folate receptor on CD34(+) cells. Blood 1999; 93:3940 - 8; PMID: 10339503
  • Veggian R, Fasolato S, Ménard S, Minucci D, Pizzetti P, Regazzoni M, et al. Immunohistochemical reactivity of a monoclonal antibody prepared against human ovarian carcinoma on normal and pathological female genital tissues. Tumori 1989; 75:510 - 3; PMID: 2481353
  • Garin-Chesa P, Campbell I, Saigo PE, Lewis JL Jr., Old LJ, Rettig WJ. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am J Pathol 1993; 142:557 - 67; PMID: 8434649
  • Buist MR, Molthoff CF, Kenemans P, Meijer CJ. Distribution of OV-TL 3 and MOv18 in normal and malignant ovarian tissue. J Clin Pathol 1995; 48:631 - 6; http://dx.doi.org/10.1136/jcp.48.7.631; PMID: 7560169
  • Wu M, Gunning W, Ratnam M. Expression of folate receptor type alpha in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomarkers Prev 1999; 8:775 - 82; PMID: 10498396
  • Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994; 73:2432 - 43; http://dx.doi.org/10.1002/1097-0142(19940501)73:9<2432::AID-CNCR2820730929>3.0.CO;2-S; PMID: 7513252
  • Selhub J, Rosenberg IH. Folate transport in isolated brush border membrane vesicles from rat intestine. J Biol Chem 1981; 256:4489 - 93; PMID: 7217093
  • Shayeghi M, Latunde-Dada GO, Oakhill JS, Laftah AH, Takeuchi K, Halliday N, et al. Identification of an intestinal heme transporter. Cell 2005; 122:789 - 801; http://dx.doi.org/10.1016/j.cell.2005.06.025; PMID: 16143108
  • Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006; 127:917 - 28; http://dx.doi.org/10.1016/j.cell.2006.09.041; PMID: 17129779
  • Umapathy NS, Gnana-Prakasam JP, Martin PM, Mysona B, Dun Y, Smith SB, et al. Cloning and functional characterization of the proton-coupled electrogenic folate transporter and analysis of its expression in retinal cell types. Invest Ophthalmol Vis Sci 2007; 48:5299 - 305; http://dx.doi.org/10.1167/iovs.07-0288; PMID: 17962486
  • Nakai Y, Inoue K, Abe N, Hatakeyama M, Ohta KY, Otagiri M, et al. Functional characterization of human proton-coupled folate transporter/heme carrier protein 1 heterologously expressed in mammalian cells as a folate transporter. J Pharmacol Exp Ther 2007; 322:469 - 76; http://dx.doi.org/10.1124/jpet.107.122606; PMID: 17475902
  • Inoue K, Nakai Y, Ueda S, Kamigaso S, Ohta KY, Hatakeyama M, et al. Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. Am J Physiol Gastrointest Liver Physiol 2008; 294:G660 - 8; http://dx.doi.org/10.1152/ajpgi.00309.2007; PMID: 18174275
  • Qiu A, Min SH, Jansen M, Malhotra U, Tsai E, Cabelof DC, et al. Rodent intestinal folate transporters (SLC46A1): secondary structure, functional properties, and response to dietary folate restriction. Am J Physiol Cell Physiol 2007; 293:C1669 - 78; http://dx.doi.org/10.1152/ajpcell.00202.2007; PMID: 17898134
  • Unal ES, Zhao R, Qiu A, Goldman ID. N-linked glycosylation and its impact on the electrophoretic mobility and function of the human proton-coupled folate transporter (HsPCFT). Biochim Biophys Acta 2008; 1778:1407 - 14; http://dx.doi.org/10.1016/j.bbamem.2008.03.009; PMID: 18405659
  • Zhao R, Unal ES, Shin DS, Goldman ID. Membrane topological analysis of the proton-coupled folate transporter (PCFT-SLC46A1) by the substituted cysteine accessibility method. Biochemistry 2010; 49:2925 - 31; http://dx.doi.org/10.1021/bi9021439; PMID: 20225891
  • Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, et al. Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 2012; 287:4982 - 95; http://dx.doi.org/10.1074/jbc.M111.306860; PMID: 22179615
  • Subramanian VS, Marchant JS, Said HM. Apical membrane targeting and trafficking of the human proton-coupled transporter in polarized epithelia. Am J Physiol Cell Physiol 2008; 294:C233 - 40; http://dx.doi.org/10.1152/ajpcell.00468.2007; PMID: 18003745
  • Zhao R, Qiu A, Tsai E, Jansen M, Akabas MH, Goldman ID. The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharmacol 2008; 74:854 - 62; http://dx.doi.org/10.1124/mol.108.045443; PMID: 18524888
  • Kugel Desmoulin S, Wang L, Polin L, White K, Kushner J, Stout M, et al. Functional Loss of the Reduced Folate Carrier Enhances the Antitumor Activities of Novel Antifolates with Selective Uptake by the Proton-coupled Folate Transporter. Mol Pharmacol 2012; In Press
  • Unal ES, Zhao R, Chang MH, Fiser A, Romero MF, Goldman ID. The functional roles of the His247 and His281 residues in folate and proton translocation mediated by the human proton-coupled folate transporter SLC46A1. J Biol Chem 2009; 284:17846 - 57; http://dx.doi.org/10.1074/jbc.M109.008060; PMID: 19389703
  • Mahadeo K, Diop-Bove N, Shin D, Unal ES, Teo J, Zhao R, et al. Properties of the Arg376 residue of the proton-coupled folate transporter (PCFT-SLC46A1) and a glutamine mutant causing hereditary folate malabsorption. Am J Physiol Cell Physiol 2010; 299:C1153 - 61; http://dx.doi.org/10.1152/ajpcell.00113.2010; PMID: 20686069
  • Urquhart BL, Gregor JC, Chande N, Knauer MJ, Tirona RG, Kim RB. The human proton-coupled folate transporter (hPCFT): modulation of intestinal expression and function by drugs. Am J Physiol Gastrointest Liver Physiol 2010; 298:G248 - 54; http://dx.doi.org/10.1152/ajpgi.00224.2009; PMID: 19762432
  • Wollack JB, Makori B, Ahlawat S, Koneru R, Picinich SC, Smith A, et al. Characterization of folate uptake by choroid plexus epithelial cells in a rat primary culture model. J Neurochem 2008; 104:1494 - 503; http://dx.doi.org/10.1111/j.1471-4159.2007.05095.x; PMID: 18086128
  • Diop-Bove NK, Wu J, Zhao R, Locker J, Goldman ID. Hypermethylation of the human proton-coupled folate transporter (SLC46A1) minimal transcriptional regulatory region in an antifolate-resistant HeLa cell line. Mol Cancer Ther 2009; 8:2424 - 31; http://dx.doi.org/10.1158/1535-7163.MCT-08-0938; PMID: 19671745
  • Stark M, Gonen N, Assaraf YG. Functional elements in the minimal promoter of the human proton-coupled folate transporter. Biochem Biophys Res Commun 2009; 388:79 - 85; http://dx.doi.org/10.1016/j.bbrc.2009.07.116; PMID: 19643086
  • Gonen N, Bram EE, Assaraf YG. PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells. Biochem Biophys Res Commun 2008; 376:787 - 92; http://dx.doi.org/10.1016/j.bbrc.2008.09.074; PMID: 18817749
  • Gonen N, Assaraf YG. The obligatory intestinal folate transporter PCFT (SLC46A1) is regulated by nuclear respiratory factor 1. J Biol Chem 2010; 285:33602 - 13; http://dx.doi.org/10.1074/jbc.M110.135640; PMID: 20724482
  • Scarpulla RC. Nucleus-encoded regulators of mitochondrial function: Integration of respiratory chain expression, nutrient sensing and metabolic stress. Biochim Biophys Acta 2011; 1819:1088 - 97; PMID: 22080153
  • Chang CM, Yu CC, Lu HT, Chou YF, Huang RFS. Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver. Br J Nutr 2007; 97:855 - 63; http://dx.doi.org/10.1017/S0007114507666410; PMID: 17381984
  • Brayton KA, Chen Z, Zhou G, Nagy PL, Gavalas A, Trent JM, et al. Two genes for de novo purine nucleotide synthesis on human chromosome 4 are closely linked and divergently transcribed. J Biol Chem 1994; 269:5313 - 21; PMID: 8106516
  • Chen S, Nagy PL, Zalkin H. Role of NRF-1 in bidirectional transcription of the human GPAT-AIRC purine biosynthesis locus. Nucleic Acids Res 1997; 25:1809 - 16; http://dx.doi.org/10.1093/nar/25.9.1809; PMID: 9108165
  • Eloranta JJ, Zaïr ZM, Hiller C, Häusler S, Stieger B, Kullak-Ublick GA. Vitamin D3 and its nuclear receptor increase the expression and activity of the human proton-coupled folate transporter. Mol Pharmacol 2009; 76:1062 - 71; http://dx.doi.org/10.1124/mol.109.055392; PMID: 19666701
  • Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, et al. The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 2007; 110:1147 - 52; http://dx.doi.org/10.1182/blood-2007-02-077099; PMID: 17446347
  • Min SH, Oh SY, Karp GI, Poncz M, Zhao R, Goldman ID. The clinical course and genetic defect in the PCFT gene in a 27-year-old woman with hereditary folate malabsorption. J Pediatr 2008; 153:435 - 7; http://dx.doi.org/10.1016/j.jpeds.2008.04.009; PMID: 18718264
  • Lasry I, Berman B, Straussberg R, Sofer Y, Bessler H, Sharkia M, et al. A novel loss-of-function mutation in the proton-coupled folate transporter from a patient with hereditary folate malabsorption reveals that Arg 113 is crucial for function. Blood 2008; 112:2055 - 61; http://dx.doi.org/10.1182/blood-2008-04-150276; PMID: 18559978
  • Geller J, Kronn D, Jayabose S, Sandoval C. Hereditary folate malabsorption: family report and review of the literature. Medicine (Baltimore) 2002; 81:51 - 68; http://dx.doi.org/10.1097/00005792-200201000-00004; PMID: 11807405
  • Shin DS, Min SH, Russell L, Zhao R, Fiser A, Goldman ID. Functional roles of aspartate residues of the proton-coupled folate transporter (PCFT-SLC46A1); a D156Y mutation causing hereditary folate malabsorption. Blood 2010; 116:5162 - 9; http://dx.doi.org/10.1182/blood-2010-06-291237; PMID: 20805364
  • Shin DS, Mahadeo K, Min SH, Diop-Bove N, Clayton P, Zhao R, et al. Identification of novel mutations in the proton-coupled folate transporter (PCFT-SLC46A1) associated with hereditary folate malabsorption. Mol Genet Metab 2011; 103:33 - 7; http://dx.doi.org/10.1016/j.ymgme.2011.01.008; PMID: 21333572
  • Atabay B, Turker M, Ozer EA, Mahadeo K, Diop-Bove N, Goldman ID. Mutation of the proton-coupled folate transporter gene (PCFT-SLC46A1) in Turkish siblings with hereditary folate malabsorption. Pediatr Hematol Oncol 2010; 27:614 - 9; http://dx.doi.org/10.3109/08880018.2010.481705; PMID: 20795774
  • Meyer E, Kurian MA, Pasha S, Trembath RC, Cole T, Maher ER. A novel PCFT gene mutation (p.Cys66LeufsX99) causing hereditary folate malabsorption. Mol Genet Metab 2010; 99:325 - 8; http://dx.doi.org/10.1016/j.ymgme.2009.11.004; PMID: 20005757
  • Unal ES, Zhao R, Goldman ID. Role of the glutamate 185 residue in proton translocation mediated by the proton-coupled folate transporter SLC46A1. Am J Physiol Cell Physiol 2009; 297:C66 - 74; http://dx.doi.org/10.1152/ajpcell.00096.2009; PMID: 19403800
  • Borzutzky A, Crompton B, Bergmann AK, Giliani S, Baxi S, Martin M, et al. Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled folate transporter. Clin Immunol 2009; 133:287 - 94; http://dx.doi.org/10.1016/j.clim.2009.08.006; PMID: 19740703
  • Zhao R, Shin DS, Diop-Bove N, Ovits CG, Goldman ID. Random mutagenesis of the proton-coupled folate transporter (SLC46A1), clustering of mutations, and the bases for associated losses of function. J Biol Chem 2011; 286:24150 - 8; http://dx.doi.org/10.1074/jbc.M111.236539; PMID: 21602279
  • Shin DS, Zhao R, Yap EH, Fiser A, Goldman IDA. A P425R mutation of the proton-coupled folate transporter causing hereditary folate malabsorption produces a highly selective alteration in folate binding. Am J Physiol Cell Physiol 2012; 302:C1405 - 12; http://dx.doi.org/10.1152/ajpcell.00435.2011; PMID: 22345511
  • Veenhoff LM, Heuberger EH, Poolman B. Quaternary structure and function of transport proteins. Trends Biochem Sci 2002; 27:242 - 9; http://dx.doi.org/10.1016/S0968-0004(02)02077-7; PMID: 12076536
  • Hou Z, Kugel Desmoulin S, Etnyre E, Olive M, Hsiung B, Cherian C, et al. Identification and functional impact of homo-oligomers of the human proton-coupled folate transporter. J Biol Chem 2012; 287:4982 - 95; http://dx.doi.org/10.1074/jbc.M111.306860; PMID: 22179615
  • Duan P, Wu J, You G. Mutational analysis of the role of GXXXG motif in the function of human organic anion transporter 1 (hOAT1). Int J Biochem Mol Biol 2011; 2:1 - 7; PMID: 21340049
  • Polgar O, Ierano C, Tamaki A, Stanley B, Ward Y, Xia D, et al. Mutational analysis of threonine 402 adjacent to the GXXXG dimerization motif in transmembrane segment 1 of ABCG2. Biochemistry 2010; 49:2235 - 45; http://dx.doi.org/10.1021/bi902085q; PMID: 20088606
  • Zhao R, Shin DS, Fiser A, Goldman ID. Identification of a functionally critical GXXG motif and its relationship to the folate binding site of the proton-coupled folate transporter (PCFT-SLC46A1). Am J Physiol Cell Physiol 2012; In Press http://dx.doi.org/10.1152/ajpcell.00123.2012; PMID: 22785121
  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S. Structure and mechanism of the lactose permease of Escherichia coli. Science 2003; 301:610 - 5; http://dx.doi.org/10.1126/science.1088196; PMID: 12893935
  • Chattopadhyay S, Moran RG, Goldman ID. Pemetrexed: biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer Ther 2007; 6:404 - 17; http://dx.doi.org/10.1158/1535-7163.MCT-06-0343; PMID: 17308042
  • Chládek J, Martínková J, Simková M, Vanecková J, Koudelková V, Nozicková M. Pharmacokinetics of low doses of methotrexate in patients with psoriasis over the early period of treatment. Eur J Clin Pharmacol 1998; 53:437 - 44; http://dx.doi.org/10.1007/s002280050404; PMID: 9551702
  • Giannini EH, Brewer EJ, Kuzmina N, Shaikov A, Maximov A, Vorontsov I, et al, The Pediatric Rheumatology Collaborative Study Group and The Cooperative Children’s Study Group. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.-U.S.S.R. double-blind, placebo-controlled trial. N Engl J Med 1992; 326:1043 - 9; http://dx.doi.org/10.1056/NEJM199204163261602; PMID: 1549149
  • Wilson KS, Malfair Taylor SC. Raltitrexed: optimism and reality. Expert Opin Drug Metab Toxicol 2009; 5:1447 - 54; http://dx.doi.org/10.1517/17425250903307455; PMID: 19863453
  • Chu E, Callender MA, Farrell MP, Schmitz JC. Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 2003; 52:Suppl 1 S80 - 9; http://dx.doi.org/10.1007/s00280-003-0625-9; PMID: 12819937
  • Goldman ID, Matherly LH. The cellular pharmacology of methotrexate. Pharmacol Ther 1985; 28:77 - 102; http://dx.doi.org/10.1016/0163-7258(85)90083-X; PMID: 2414788
  • Hughes LR, Stephens TC, Boyle FT, Jackman AL. Raltitrexed (Tomudex), a Highly Polyglutamatable Antifolate Thymidylate Synthase Inhibitor. In: Jackman AL, ed. Anticancer Drug Development Guide: Antifolate Drugs in Cancer Therapy. Totowa, NJ: Humana Press, Inc., 1999:147-65.
  • Mendelsohn LG, Worzalla JF, Walling JM. Preclinical and Clinical Evaluation of the Glycinamide Ribonucleotide Formyltransferase Inhibitors Lometrexol and LY309887. In: Jackman AL, ed. Anticancer Drug Development Guide: Antifolate Drugs in Cancer Therapy. Totowa, NJ: Humana Press, Inc., 1999:261-80.
  • Shih C, Thornton DE. Preclinical Pharmacology Studies and the Clinical Development of a Novel Multitargeted Antifolate, MTA (LY231514). In: Jackman AL, ed. Anticancer Drug Development Guide: Antifolate Drugs in Cancer Therapy. Totowa, NJ: Humana Press, Inc., 1999:183-201.
  • Trent DF, Seither RL, Goldman ID. Rate and extent of interconversion of tetrahydrofolate cofactors to dihydrofolate after cessation of dihydrofolate reductase activity in stationary versus log phase L1210 leukemia cells. J Biol Chem 1991; 266:5445 - 9; PMID: 1825999
  • Allegra CJ, Fine RL, Drake JC, Chabner BA. The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J Biol Chem 1986; 261:6478 - 85; PMID: 3700401
  • Matherly LH, Seither RL, Goldman ID. Metabolism of the diaminoantifolates: biosynthesis and pharmacology of the 7-hydroxyl and polyglutamyl metabolites of methotrexate and related antifolates. Pharmacol Ther 1987; 35:27 - 56; http://dx.doi.org/10.1016/0163-7258(87)90104-5; PMID: 2447596
  • Trent DF, Seither RL, Goldman ID. Compartmentation of intracellular folates. Failure to interconvert tetrahydrofolate cofactors to dihydrofolate in mitochondria of L1210 leukemia cells treated with trimetrexate. Biochem Pharmacol 1991; 42:1015 - 9; http://dx.doi.org/10.1016/0006-2952(91)90283-B; PMID: 1831361
  • Matherly LH, Muench SP. Evidence for a localized conversion of endogenous tetrahydrofolate cofactors to dihydrofolate as an important element in antifolate action in murine leukemia cells. Biochem Pharmacol 1990; 39:2005 - 14; http://dx.doi.org/10.1016/0006-2952(90)90622-R; PMID: 2141258
  • Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 2010; 30:57 - 81; http://dx.doi.org/10.1146/annurev.nutr.012809.104810; PMID: 20645850
  • Matherly LH, Voss MK, Anderson LA, Fry DW, Goldman ID. Enhanced polyglutamylation of aminopterin relative to methotrexate in the Ehrlich ascites tumor cell in vitro. Cancer Res 1985; 45:1073 - 8; PMID: 2578870
  • Menter A, Thrash B, Cherian C, Matherly LH, Wang L, Gangjee A, et al. Intestinal transport of aminopterin enantiomers in dogs and humans with psoriasis is stereoselective: evidence for a mechanism involving the proton-coupled folate transporter. J Pharmacol Exp Ther 2012; 342:696 - 708; http://dx.doi.org/10.1124/jpet.112.195479; PMID: 22653877
  • Cole PD, Drachtman RA, Masterson M, Smith AK, Glod J, Zebala JA, et al. Phase 2B trial of aminopterin in multiagent therapy for children with newly diagnosed acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2008; 62:65 - 75; http://dx.doi.org/10.1007/s00280-007-0576-7; PMID: 17768625
  • Sirotnak FM, DeGraw JI, Schmid FA, Goutas LJ, Moccio DM. New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother Pharmacol 1984; 12:26 - 30; PMID: 6690070
  • Schmid FA, Sirotnak FM, Otter GM, DeGraw JI. New folate analogs of the 10-deaza-aminopterin series: markedly increased antitumor activity of the 10-ethyl analog compared to the parent compound and methotrexate against some human tumor xenografts in nude mice. Cancer Treat Rep 1985; 69:551 - 3; PMID: 4005878
  • Sirotnak FM, Otter GM, Schmid FA. Markedly improved efficacy of edatrexate compared to methotrexate in a high-dose regimen with leucovorin rescue against metastatic murine solid tumors. Cancer Res 1993; 53:587 - 91; PMID: 8425192
  • Sirotnak FM, DeGraw JI, Colwell WT, Piper JR. A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother Pharmacol 1998; 42:313 - 8; http://dx.doi.org/10.1007/s002800050823; PMID: 9744777
  • Krug LM, Azzoli CG, Kris MG, Miller VA, Khokhar NZ, Tong W, et al. 10-propargyl-10-deazaaminopterin: an antifolate with activity in patients with previously treated non-small cell lung cancer. Clin Cancer Res 2003; 9:2072 - 8; PMID: 12796370
  • O’Connor OA, Horwitz S, Hamlin P, Portlock C, Moskowitz CH, Sarasohn D, et al. Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol 2009; 27:4357 - 64; http://dx.doi.org/10.1200/JCO.2008.20.8470; PMID: 19652067
  • Jackman AL, Calvert AH. Folate-based thymidylate synthase inhibitors as anticancer drugs. Ann Oncol 1995; 6:871 - 81; PMID: 8624289
  • Jackman AL, Taylor GA, Gibson W, Kimbell R, Brown M, Calvert AH, et al. ICI D1694, a quinazoline antifolate thymidylate synthase inhibitor that is a potent inhibitor of L1210 tumor cell growth in vitro and in vivo: a new agent for clinical study. Cancer Res 1991; 51:5579 - 86; PMID: 1913676
  • Surmont VF, van Meerbeeck JP. Raltitrexed in mesothelioma. Expert Rev Anticancer Ther 2011; 11:1481 - 90; http://dx.doi.org/10.1586/era.11.136; PMID: 21999120
  • Theti DS, Bavetsias V, Skelton LA, Titley J, Gibbs D, Jansen G, et al. Selective delivery of CB300638, a cyclopenta[g]quinazoline-based thymidylate synthase inhibitor into human tumor cell lines overexpressing the alpha-isoform of the folate receptor. Cancer Res 2003; 63:3612 - 8; PMID: 12839949
  • Jackson RC, Harkrader RJ. The contributions of de-novo and salvage pathways of nucleotide biosynthesis in normal and malignant cells. In: Tattersall MHN, Fox RM, eds. Nucleosides and Cancer Treatment. Sydney: Academic Press, 1981:18-31.
  • Howell SB, Mansfield SJ, Taetle R. Thymidine and hypoxanthine requirements of normal and malignant human cells for protection against methotrexate cytotoxicity. Cancer Res 1981; 41:945 - 50; PMID: 6257387
  • Moran RG, Baldwin SW, Taylor EC, Shih C. The 6S- and 6R-diastereomers of 5, 10-dideaza-5, 6, 7, 8-tetrahydrofolate are equiactive inhibitors of de novo purine synthesis. J Biol Chem 1989; 264:21047 - 51; PMID: 2592365
  • Taylor EC, Harrington PJ, Fletcher SR, Beardsley GP, Moran RG. Synthesis of the antileukemic agents 5,10-dideazaaminopterin and 5,10-dideaza-5,6,7,8-tetrahydroaminopterin. J Med Chem 1985; 28:914 - 21; http://dx.doi.org/10.1021/jm00145a012; PMID: 4009615
  • Jansen G. Receptor- and carrier- mediated transport system for folates and antifolates. In: Jackman AL, ed. Anticancer Drug Development Guide: Antifolate Drugs in Cancer Therapy. Totowa, NJ: Humana Press Inc., 1999:293-321.
  • Beardsley GP, Moroson BA, Taylor EC, Moran RG. A new folate antimetabolite, 5,10-dideaza-5,6,7,8-tetrahydrofolate is a potent inhibitor of de novo purine synthesis. J Biol Chem 1989; 264:328 - 33; PMID: 2909524
  • Matherly LH, Angeles SM, McGuire JJ. Determinants of the disparate antitumor activities of (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate and methotrexate toward human lymphoblastic leukemia cells, characterized by severely impaired antifolate membrane transport. Biochem Pharmacol 1993; 46:2185 - 95; http://dx.doi.org/10.1016/0006-2952(93)90608-Y; PMID: 7506026
  • Ray MS, Muggia FM, Leichman CG, Grunberg SM, Nelson RL, Dyke RW, et al. Phase I study of (6R)-5,10-dideazatetrahydrofolate: a folate antimetabolite inhibitory to de novo purine synthesis. J Natl Cancer Inst 1993; 85:1154 - 9; http://dx.doi.org/10.1093/jnci/85.14.1154; PMID: 8320744
  • Roberts JD, Poplin EA, Tombes MB, Kyle B, Spicer DV, Grant S, et al. Weekly lometrexol with daily oral folic acid is appropriate for phase II evaluation. Cancer Chemother Pharmacol 2000; 45:103 - 10; http://dx.doi.org/10.1007/s002800050017; PMID: 10663624
  • Boritzki TJ, Barlett CA, Zhang C, Howland EF. AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase. Invest New Drugs 1996; 14:295 - 303; http://dx.doi.org/10.1007/BF00194533; PMID: 8958185
  • Bissett D, McLeod HL, Sheedy B, Collier M, Pithavala Y, Paradiso L, et al. Phase I dose-escalation and pharmacokinetic study of a novel folate analogue AG2034. Br J Cancer 2001; 84:308 - 12; http://dx.doi.org/10.1054/bjoc.2000.1601; PMID: 11161393
  • Budman DR, Johnson R, Barile B, Bowsher RR, Vinciguerra V, Allen SL, et al. Phase I and pharmacokinetic study of LY309887: a specific inhibitor of purine biosynthesis. Cancer Chemother Pharmacol 2001; 47:525 - 31; http://dx.doi.org/10.1007/s002800000272; PMID: 11459206
  • Taylor EC, Kuhnt D, Shih C, Rinzel SM, Grindey GB, Barredo J, et al. A dideazatetrahydrofolate analogue lacking a chiral center at C-6, N-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5- yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J Med Chem 1992; 35:4450 - 4; http://dx.doi.org/10.1021/jm00101a023; PMID: 1447744
  • Shih C, Chen VJ, Gossett LS, Gates SB, MacKellar WC, Habeck LL, et al. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res 1997; 57:1116 - 23; PMID: 9067281
  • Zhao R, Gao F, Goldman ID. Marked suppression of the activity of some, but not all, antifolate compounds by augmentation of folate cofactor pools within tumor cells. Biochem Pharmacol 2001; 61:857 - 65; http://dx.doi.org/10.1016/S0006-2952(01)00532-9; PMID: 11274972
  • Zhao R, Chattopadhyay S, Hanscom M, Goldman ID. Antifolate resistance in a HeLa cell line associated with impaired transport independent of the reduced folate carrier. Clin Cancer Res 2004; 10:8735 - 42; http://dx.doi.org/10.1158/1078-0432.CCR-04-0932; PMID: 15623659
  • Zhao R, Gao F, Hanscom M, Goldman ID. A prominent low-pH methotrexate transport activity in human solid tumors: contribution to the preservation of methotrexate pharmacologic activity in HeLa cells lacking the reduced folate carrier. Clin Cancer Res 2004; 10:718 - 27; http://dx.doi.org/10.1158/1078-0432.CCR-1066-03; PMID: 14760095
  • Zhao R, Hanscom M, Chattopadhyay S, Goldman ID. Selective preservation of pemetrexed pharmacological activity in HeLa cells lacking the reduced folate carrier: association with the presence of a secondary transport pathway. Cancer Res 2004; 64:3313 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-03-3953; PMID: 15126375
  • Racanelli AC, Rothbart SB, Heyer CL, Moran RG. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res 2009; 69:5467 - 74; http://dx.doi.org/10.1158/0008-5472.CAN-08-4979; PMID: 19549896
  • Rothbart SB, Racanelli AC, Moran RG. Pemetrexed indirectly activates the metabolic kinase AMPK in human carcinomas. Cancer Res 2010; 70:10299 - 309; http://dx.doi.org/10.1158/0008-5472.CAN-10-1873; PMID: 21159649
  • Bareford MD, Park MA, Yacoub A, Hamed HA, Tang Y, Cruickshanks N, et al. Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells. Cancer Res 2011; 71:4955 - 67; http://dx.doi.org/10.1158/0008-5472.CAN-11-0898; PMID: 21622715
  • Cohen MH, Cortazar P, Justice R, Pazdur R. Approval summary: pemetrexed maintenance therapy of advanced/metastatic nonsquamous, non-small cell lung cancer (NSCLC). Oncologist 2010; 15:1352 - 8; http://dx.doi.org/10.1634/theoncologist.2010-0224; PMID: 21148615
  • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27:441 - 64; http://dx.doi.org/10.1146/annurev-cellbio-092910-154237; PMID: 21985671
  • Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 1993; 265:C1015 - 29; PMID: 8238296
  • McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 2000; 278:C676 - 88; PMID: 10751317
  • Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. J Biomed Biotechnol 2010; 2010:427694; http://dx.doi.org/10.1155/2010/427694; PMID: 20454640
  • Chiche J, Le Fur Y, Vilmen C, Frassineti F, Daniel L, Halestrap AP, et al. In vivo pH in metabolic-defective Ras-transformed fibroblast tumors: key role of the monocarboxylate transporter, MCT4, for inducing an alkaline intracellular pH. Int J Cancer 2012; 130:1511 - 20; http://dx.doi.org/10.1002/ijc.26125; PMID: 21484790
  • Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, et al. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 2009; 69:358 - 68; http://dx.doi.org/10.1158/0008-5472.CAN-08-2470; PMID: 19118021
  • Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212:1672 - 83; http://dx.doi.org/10.1242/jeb.029454; PMID: 19448077
  • Boron WF, Chen L, Parker MD. Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol 2009; 212:1697 - 706; http://dx.doi.org/10.1242/jeb.028563; PMID: 19448079
  • Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging 2002; 16:430 - 50; http://dx.doi.org/10.1002/jmri.10181; PMID: 12353258
  • Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt R, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008; 453:940 - 3; http://dx.doi.org/10.1038/nature07017; PMID: 18509335
  • Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 2011; 11:671 - 7; http://dx.doi.org/10.1038/nrc3110; PMID: 21833026
  • Anderson CM, Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda) 2010; 25:364 - 77; http://dx.doi.org/10.1152/physiol.00027.2010; PMID: 21186281
  • Anderson CM, Jevons M, Thangaraju M, Edwards N, Conlon NJ, Woods S, et al. Transport of the photodynamic therapy agent 5-aminolevulinic acid by distinct H+-coupled nutrient carriers coexpressed in the small intestine. J Pharmacol Exp Ther 2010; 332:220 - 8; http://dx.doi.org/10.1124/jpet.109.159822; PMID: 19789362
  • Nakanishi T, Tamai I, Takaki A, Tsuji A. Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int J Cancer 2000; 88:274 - 80; http://dx.doi.org/10.1002/1097-0215(20001015)88:2<274::AID-IJC20>3.0.CO;2-5; PMID: 11004680
  • Sun Y, Sun J, Shi S, Jing Y, Yin S, Chen Y, et al. Synthesis, transport and pharmacokinetics of 5′-amino acid ester prodrugs of 1-beta-D-arabinofuranosylcytosine. Mol Pharm 2009; 6:315 - 25; http://dx.doi.org/10.1021/mp800200a; PMID: 19115956
  • Anderson CM, Grenade DS, Boll M, Foltz M, Wake KA, Kennedy DJ, et al. H+/amino acid transporter 1 (PAT1) is the imino acid carrier: An intestinal nutrient/drug transporter in human and rat. Gastroenterology 2004; 127:1410 - 22; http://dx.doi.org/10.1053/j.gastro.2004.08.017; PMID: 15521011
  • Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, et al. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther 2006; 318:521 - 9; http://dx.doi.org/10.1124/jpet.106.104364; PMID: 16702441
  • Wong SC, Proefke SA, Bhushan A, Matherly LH. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem 1995; 270:17468 - 75; http://dx.doi.org/10.1074/jbc.270.29.17468; PMID: 7615551
  • Shih C, Barnett CJ, Grindey GB, Pearce HL, Engelhardt JA, Todd GC, et al. Structural Features That Determine the Biological Activity of Pyrrolo[2,3-d]pyrimidine Based Antifolates. The 10th International Symposium, Chemistry and Biology of Pteridines and Folates. Orange Beach, AL, 1993:Abstr F15.
  • Gangjee A, Zeng Y, McGuire JJ, Mehraein F, Kisliuk RL. Synthesis of classical, three-carbon-bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 2004; 47:6893 - 901; http://dx.doi.org/10.1021/jm040123k; PMID: 15615538
  • Gangjee A, Zeng Y, McGuire JJ, Kisliuk RL. Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J Med Chem 2005; 48:5329 - 36; http://dx.doi.org/10.1021/jm058213s; PMID: 16078850
  • Gates SB, Worzalla JF, Shih C, Grindey GB, Mendelsohn LG. Dietary folate and folylpolyglutamate synthetase activity in normal and neoplastic murine tissues and human tumor xenografts. Biochem Pharmacol 1996; 52:1477 - 9; http://dx.doi.org/10.1016/S0006-2952(96)00554-0; PMID: 8937460
  • Ifergan I, Jansen G, Assaraf YG. Cytoplasmic confinement of breast cancer resistance protein (BCRP/ABCG2) as a novel mechanism of adaptation to short-term folate deprivation. Mol Pharmacol 2005; 67:1349 - 59; http://dx.doi.org/10.1124/mol.104.008250; PMID: 15657365
  • Bronder JL, Moran RG. Antifolates targeting purine synthesis allow entry of tumor cells into S phase regardless of p53 function. Cancer Res 2002; 62:5236 - 41; PMID: 12234990
  • Bronder JL, Moran RG. A defect in the p53 response pathway induced by de novo purine synthesis inhibition. J Biol Chem 2003; 278:48861 - 71; http://dx.doi.org/10.1074/jbc.M304844200; PMID: 14517211
  • Illei PB, Rusch VW, Zakowski MF, Ladanyi M. Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 2003; 9:2108 - 13; PMID: 12796375
  • Hori H, Tran P, Carrera CJ, Hori Y, Rosenbach MD, Carson DA, et al. Methylthioadenosine phosphorylase cDNA transfection alters sensitivity to depletion of purine and methionine in A549 lung cancer cells. Cancer Res 1996; 56:5653 - 8; PMID: 8971171
  • An S, Kumar R, Sheets ED, Benkovic SJ. Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 2008; 320:103 - 6; http://dx.doi.org/10.1126/science.1152241; PMID: 18388293