772
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Amyloid precursor-like protein 2 suppresses irradiation-induced apoptosis in Ewing sarcoma cells and is elevated in immune-evasive Ewing sarcoma cells

, , , , &
Pages 752-760 | Received 12 Feb 2013, Accepted 26 May 2013, Published online: 26 Jun 2013

References

  • Applebaum MA, Goldsby R, Neuhaus J, DuBois SG. Clinical features and outcomes in patients with Ewing sarcoma and regional lymph node involvement. Pediatr Blood Cancer 2012; 59:617 - 20; http://dx.doi.org/10.1002/pbc.24053; PMID: 22184129
  • Stahl M, Ranft A, Paulussen M, Bölling T, Vieth V, Bielack S, et al. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 2011; 57:549 - 53; http://dx.doi.org/10.1002/pbc.23040; PMID: 21442722
  • Meltzer PS. Is Ewing’s sarcoma a stem cell tumor?. Cell Stem Cell 2007; 1:13 - 5; http://dx.doi.org/10.1016/j.stem.2007.05.011; PMID: 18371327
  • Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11:421 - 9; http://dx.doi.org/10.1016/j.ccr.2007.02.027; PMID: 17482132
  • Riggi N, Stamenkovic I. The biology of Ewing sarcoma. Cancer Lett 2007; 254:1 - 10; http://dx.doi.org/10.1016/j.canlet.2006.12.009; PMID: 17250957
  • Herrero-Martín D, Osuna D, Ordóñez JL, Sevillano V, Martins AS, Mackintosh C, et al. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br J Cancer 2009; 101:80 - 90; http://dx.doi.org/10.1038/sj.bjc.6605104; PMID: 19491900
  • Soldatenkov VA, Trofimova IN, Rouzaut A, McDermott F, Dritschilo A, Notario V. Differential regulation of the response to DNA damage in Ewing’s sarcoma cells by ETS1 and EWS/FLI-1. Oncogene 2002; 21:2890 - 5; http://dx.doi.org/10.1038/sj.onc.1205393; PMID: 11973649
  • Sharib JM, Cyrus J, Horvai A, Gray Hazard FK, Neuhaus J, Matthay KK, et al. Predictors of acute chemotherapy-associated toxicity in patients with Ewing sarcoma. Pediatr Blood Cancer 2012; 59:611 - 6; http://dx.doi.org/10.1002/pbc.24031; PMID: 22180320
  • Hattangadi J, Esty B, Winey B, Duigenan S, Huang M, Yock T. Radiation recall myositis in pediatric Ewing sarcoma. Pediatr Blood Cancer 2012; 59:570 - 2; http://dx.doi.org/10.1002/pbc.23374; PMID: 22021129
  • Ewing J. Diffuse endothelium of bone. Proc NY Path Soc 1921; 21:17-24.
  • Bernstein M, Kovar H, Paulussen M, Randall RL, Schuck A, Teot LA, et al. Ewing’s sarcoma family of tumors: current management. Oncologist 2006; 11:503 - 19; http://dx.doi.org/10.1634/theoncologist.11-5-503; PMID: 16720851
  • Paulussen M, Bielack S, Jürgens H, Casali PG, ESMO Guidelines Working Group. Ewing’s sarcoma of the bone: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 2009; 20:Suppl 4 140 - 2; http://dx.doi.org/10.1093/annonc/mdp155; PMID: 19454436
  • Kovar H, Pospisilova S, Jug G, Printz D, Gadner H. Response of Ewing tumor cells to forced and activated p53 expression. Oncogene 2003; 22:3193 - 204; http://dx.doi.org/10.1038/sj.onc.1206391; PMID: 12761489
  • Veeraraghavan J, Natarajan M, Herman TS, Aravindan N. Curcumin-altered p53-response genes regulate radiosensitivity in p53-mutant Ewing’s sarcoma cells. Anticancer Res 2010; 30:4007 - 15; PMID: 21036715
  • Soldatenkov V, Notario V, Dritschilo A. Expression of the human Bcl-2 increases resistance of Ewing’s sarcoma cells to apoptosis and inhibits poly(ADP-ribose) polymerase cleavage induced by radiation. Int J Oncol 1996; 9:547 - 51; PMID: 21541549
  • Attawia MA, Borden MD, Herbert KM, Katti DS, Asrari F, Uhrich KE, et al. Regional drug delivery with radiation for the treatment of Ewing’s sarcoma. In vitro development of a taxol release system. J Control Release 2001; 71:193 - 202; http://dx.doi.org/10.1016/S0168-3659(01)00217-6; PMID: 11274751
  • Atzpodien J, Gulati SC, Shimazaki C, Bührer C, Oz S, Kwon JH, et al. Ewing’s sarcoma: ex vivo sensitivity towards natural and lymphokine-activated killing. Oncology 1988; 45:437 - 43; http://dx.doi.org/10.1159/000226661; PMID: 3263598
  • Chin T, Toy C, Vandeven C, Cairo MS. Lymphokine-activated killer cytotoxicity in neonatal mononuclear cells: in vitro responses to tumor cell lines from pediatric solid tumors. Pediatr Res 1989; 25:156 - 60; http://dx.doi.org/10.1203/00006450-198902000-00016; PMID: 2537488
  • Kondo S, Miyatake S, Kikuchi H, Oda Y, Iwasaki K, Ohyama K, et al. Mechanism of interferon gamma-induced protection of human gliosarcoma cells from lymphokine-activated killer lysis: division of lymphokine-activated killer cells into natural killer- and T-like cells. Neurosurgery 1992; 31:534 - 40; http://dx.doi.org/10.1227/00006123-199209000-00016; PMID: 1407434
  • Joshi AD, Clark EM, Wang P, Munger CM, Hegde GV, Sanderson S, et al. Immunotherapy of human neuroblastoma using umbilical cord blood-derived effector cells. J Neuroimmune Pharmacol 2007; 2:202 - 12; http://dx.doi.org/10.1007/s11481-006-9038-y; PMID: 18040845
  • Foreman NK, Rill DR, Coustan-Smith E, Douglass EC, Brenner MK. Mechanisms of selective killing of neuroblastoma cells by natural killer cells and lymphokine activated killer cells. Potential for residual disease eradication. Br J Cancer 1993; 67:933 - 8; http://dx.doi.org/10.1038/bjc.1993.173; PMID: 8494726
  • Belova OB, Vinnichuk UD, Shlakhovenko VA, Berezhnaya NM. Efficacy of different immunotherapy approaches toward treatment of doxorubicin-resistant and doxorubicin-sensitive transplantable rhabdomyosarcoma. Exp Oncol 2007; 29:272 - 6; PMID: 18199982
  • Berdeja JG, Hess A, Lucas DM, O’Donnell P, Ambinder RF, Diehl LF, et al. Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves antibody-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clin Cancer Res 2007; 13:2392 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-06-1860; PMID: 17438098
  • Bertelli R, Neri F, Tsivian M, Ruhrman N, Cavallari G, Beltempo P, et al. Endolymphatic immunotherapy in inoperable hepatocellular carcinoma. Transplant Proc 2008; 40:1913 - 5; http://dx.doi.org/10.1016/j.transproceed.2008.05.049; PMID: 18675087
  • Hirooka Y, Itoh A, Kawashima H, Hara K, Nonogaki K, Kasugai T, et al. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas 2009; 38:e69 - 74; http://dx.doi.org/10.1097/MPA.0b013e318197a9e3; PMID: 19276867
  • Dillman RO, Duma CM, Ellis RA, Cornforth AN, Schiltz PM, Sharp SL, et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J Immunother 2009; 32:914 - 9; http://dx.doi.org/10.1097/CJI.0b013e3181b2910f; PMID: 19816190
  • Correale P, Marra M, Remondo C, Migali C, Misso G, Arcuri FP, et al. Cytotoxic drugs up-regulate epidermal growth factor receptor (EGFR) expression in colon cancer cells and enhance their susceptibility to EGFR-targeted antibody-dependent cell-mediated-cytotoxicity (ADCC). Eur J Cancer 2010; 46:1703 - 11; http://dx.doi.org/10.1016/j.ejca.2010.03.005; PMID: 20399639
  • Yin X, Ouyang S, Xu W, Zhang X, Fok KL, Wong HY, et al. YWK-II protein as a novel G(o)-coupled receptor for Müllerian inhibiting substance in cell survival. J Cell Sci 2007; 120:1521 - 8; http://dx.doi.org/10.1242/jcs.001230; PMID: 17452623
  • Peters HL, Tuli A, Wang X, Liu C, Pan Z, Ouellette MM, et al. Relevance of amyloid precursor-like protein 2 C-terminal fragments in pancreatic cancer cells. Int J Oncol 2012; 41:1464 - 74; PMID: 22797723
  • Tuli A, Sharma M, McIlhaney MM, Talmadge JE, Naslavsky N, Caplan S, et al. Amyloid precursor-like protein 2 increases the endocytosis, instability, and turnover of the H2-K(d) MHC class I molecule. J Immunol 2008; 181:1978 - 87; PMID: 18641335
  • Tuli A, Sharma M, Capek HL, Naslavsky N, Caplan S, Solheim JC. Mechanism for amyloid precursor-like protein 2 enhancement of major histocompatibility complex class I molecule degradation. J Biol Chem 2009; 284:34296 - 307; http://dx.doi.org/10.1074/jbc.M109.039727; PMID: 19808674
  • Tuli A, Sharma M, Wang X, Simone LC, Capek HL, Cate S, et al. Amyloid precursor-like protein 2 association with HLA class I molecules. Cancer Immunol Immunother 2009; 58:1419 - 31; http://dx.doi.org/10.1007/s00262-009-0657-z; PMID: 19184004
  • Peters HL, Tuli A, Sharma M, Naslavsky N, Caplan S, MacDonald RG, et al. Regulation of major histocompatibility complex class I molecule expression on cancer cells by amyloid precursor-like protein 2. Immunol Res 2011; 51:39 - 44; http://dx.doi.org/10.1007/s12026-011-8238-6; PMID: 21826533
  • Wu W, Song W, Li S, Ouyang S, Fok KL, Diao R, et al. Regulation of apoptosis by Bat3-enhanced YWK-II/APLP2 protein stability. J Cell Sci 2012; 125:4219 - 29; http://dx.doi.org/10.1242/jcs.086553; PMID: 22641691
  • Covell DG, Wallqvist A, Rabow AA, Thanki N. Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther 2003; 2:317 - 32; PMID: 12657727
  • Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, et al. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 2005; 19:1125 - 7; PMID: 15985535
  • Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45:321 - 34; PMID: 163658
  • McLoughlin DM, Miller CC. The FE65 proteins and Alzheimer’s disease. J Neurosci Res 2008; 86:744 - 54; http://dx.doi.org/10.1002/jnr.21532; PMID: 17828772
  • Orcholski ME, Zhang Q, Bredesen DE. Signaling via amyloid precursor-like proteins APLP1 and APLP2. J Alzheimers Dis 2011; 23:689 - 99; PMID: 21178287
  • Chong AS, Scuderi P, Grimes WJ, Hersh EM. Tumor targets stimulate IL-2 activated killer cells to produce interferon-gamma and tumor necrosis factor. J Immunol 1989; 142:2133 - 9; PMID: 2493506
  • Mingari MC, Ferrini S, Pende D, Bottino C, Prigione I, Moretta A, et al. Phenotypic and functional analysis of human CD3+ and CD3- clones with “lymphokine-activated killer” (LAK) activity. Frequent occurrence of CD3+ LAK clones which produce interleukin-2. Int J Cancer 1987; 40:495 - 8; http://dx.doi.org/10.1002/ijc.2910400411; PMID: 3117711
  • Verhoeven DH, de Hooge AS, Mooiman EC, Santos SJ, ten Dam MM, Gelderblom H, et al. NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol 2008; 45:3917 - 25; http://dx.doi.org/10.1016/j.molimm.2008.06.016; PMID: 18657862
  • Cho D, Shook DR, Shimasaki N, Chang YH, Fujisaki H, Campana D. Cytotoxicity of activated natural killer cells against pediatric solid tumors. Clin Cancer Res 2010; 16:3901 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-10-0735; PMID: 20542985
  • Handa K, Suzuki R, Matsui H, Shimizu Y, Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). II. IL 2-induced interferon gamma production. J Immunol 1983; 130:988 - 92; PMID: 6294182
  • Stante M, Minopoli G, Passaro F, Raia M, Vecchio LD, Russo T. Fe65 is required for Tip60-directed histone H4 acetylation at DNA strand breaks. Proc Natl Acad Sci U S A 2009; 106:5093 - 8; http://dx.doi.org/10.1073/pnas.0810869106; PMID: 19282473
  • Hallett WH, Murphy WJ. Natural killer cells: biology and clinical use in cancer therapy. Cell Mol Immunol 2004; 1:12 - 21; PMID: 16212916
  • Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008; 9:495 - 502; http://dx.doi.org/10.1038/ni1581; PMID: 18425106
  • Shresta S, MacIvor DM, Heusel JW, Russell JH, Ley TJ. Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proc Natl Acad Sci U S A 1995; 92:5679 - 83; http://dx.doi.org/10.1073/pnas.92.12.5679; PMID: 7777569
  • Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets?. Curr Opin Immunol 1998; 10:581 - 7; http://dx.doi.org/10.1016/S0952-7915(98)80227-6; PMID: 9794837
  • Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002; 20:323 - 70; http://dx.doi.org/10.1146/annurev.immunol.20.100201.131730; PMID: 11861606
  • Grossman D, Kim PJ, Schechner JS, Altieri DC. Inhibition of melanoma tumor growth in vivo by survivin targeting. Proc Natl Acad Sci U S A 2001; 98:635 - 40; http://dx.doi.org/10.1073/pnas.98.2.635; PMID: 11149963
  • Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH. BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005; 24:3285 - 96; http://dx.doi.org/10.1038/sj.onc.1208492; PMID: 15735702

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.