963
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

Antitumor and modeling studies of a penetratin-peptide that targets E2F-1 in small cell lung cancer

, , , , , , , , , , & show all
Pages 742-751 | Received 22 Mar 2013, Accepted 26 May 2013, Published online: 03 Jun 2013

References

  • Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 2010; 120:4478 - 92; http://dx.doi.org/10.1172/JCI44239; PMID: 21099110
  • Udayakumar T, Shareef MM, Diaz DA, Ahmed MM, Pollack A. The E2F1/Rb and p53/MDM2 pathways in DNA repair and apoptosis: understanding the crosstalk to develop novel strategies for prostate cancer radiotherapy. [Review] Semin Radiat Oncol 2010; 20:258 - 66; http://dx.doi.org/10.1016/j.semradonc.2010.05.007; PMID: 20832018
  • Iwamoto M, Banerjee D, Menon LG, Jurkiewicz A, Rao PH, Kemeny NE, et al. Overexpression of E2F-1 in lung and liver metastases of human colon cancer is associated with gene amplification. Cancer Biol Ther 2004; 3:395 - 9; http://dx.doi.org/10.4161/cbt.3.4.733; PMID: 14726656
  • Nelson MA, Reynolds SH, Rao UN, Goulet AC, Feng Y, Beas A, et al. Increased gene copy number of the transcription factor E2F1 in malignant melanoma. Cancer Biol Ther 2006; 5:407 - 12; http://dx.doi.org/10.4161/cbt.5.4.2512; PMID: 16481740
  • Alonso MM, Alemany R, Fueyo J, Gomez-Manzano C. E2F1 in gliomas: a paradigm of oncogene addiction. Cancer Lett 2008; 263:157 - 63; http://dx.doi.org/10.1016/j.canlet.2008.02.001; PMID: 18334281
  • Huang CL, Liu D, Nakano J, Yokomise H, Ueno M, Kadota K, et al. E2F1 overexpression correlates with thymidylate synthase and survivin gene expressions and tumor proliferation in non small-cell lung cancer. Clin Cancer Res 2007; 13:6938 - 46; http://dx.doi.org/10.1158/1078-0432.CCR-07-1539; PMID: 18056168
  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839 - 43; http://dx.doi.org/10.1038/nature03677; PMID: 15944709
  • Croxton R, Ma Y, Song L, Haura EB, Cress WD. Direct repression of the Mcl-1 promoter by E2F1. Oncogene 2002; 21:1359 - 69; http://dx.doi.org/10.1038/sj.onc.1205157; PMID: 11857079
  • Jiang Y, Saavedra HI, Holloway MP, Leone G, Altura RA. Aberrant regulation of survivin by the RB/E2F family of proteins. J Biol Chem 2004; 279:40511 - 20; http://dx.doi.org/10.1074/jbc.M404496200; PMID: 15271987
  • Engelman D, Putzer BM. The dark side of E2F-1: In transit beyond apoptosis. Cancer Res 2012; 72:2012; http://dx.doi.org/10.1158/0008-5472.CAN-11-2575
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81:323 - 30; http://dx.doi.org/10.1016/0092-8674(95)90385-2; PMID: 7736585
  • Harbour JW, Dean DC. Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2000; 2:E65 - 7; http://dx.doi.org/10.1038/35008695; PMID: 10783254
  • Hallstrom TC, Mori S, Nevins JR. An E2F-1 gene expression program that determines the balance between proliferation and cell death. Cancer Cell 2008; 13:1311 - 22; http://dx.doi.org/10.1016/j.ccr.2007.11.031
  • Kong LJ, Chang JT, Bild AH, Nevins JR. Compensation and specificity of function within the E2F family. Oncogene 2007; 26:321 - 7; http://dx.doi.org/10.1038/sj.onc.1209817; PMID: 16909124
  • Stevens C, La Thangue NB. The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amst) 2004; 3:1071 - 9; http://dx.doi.org/10.1016/j.dnarep.2004.03.034; PMID: 15279795
  • Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC, et al. Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res 2007; 9:R33; http://dx.doi.org/10.1186/bcr1681; PMID: 17535433
  • Reimer D, Sadr S, Wiedemair A, Stadlmann S, Concin N, Hofstetter G, et al. Clinical relevance of E2F family members in ovarian cancer--an evaluation in a training set of 77 patients. Clin Cancer Res 2007; 13:144 - 51; http://dx.doi.org/10.1158/1078-0432.CCR-06-0780; PMID: 17200349
  • De Meyer T, Bijsmans IT, Van de Vijver KK, Bekaert S, Oosting J, Van Criekinge W, et al. E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J Pathol 2009; 217:14 - 20; http://dx.doi.org/10.1002/path.2452; PMID: 18991331
  • Kaelin WG Jr.. E2F1 as a target: promoter-driven suicide and small molecule modulators. Cancer Biol Ther 2003; 2:Suppl 1 S48 - 54; PMID: 14508080
  • Bertino JRD, Banerjee D. E2F-1 as an anticancer drug target. Oncology Reviews 2009; 3:207 - 14; http://dx.doi.org/10.1007/s12156-009-0028-1
  • Weinstein IB. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 2002; 297:63 - 4; http://dx.doi.org/10.1126/science.1073096; PMID: 12098689
  • Bertrand JR, Malvy C, Auguste T, Tóth GK, Kiss-Ivánkovits O, Illyés E, et al. Synthesis and studies on cell-penetrating peptides. Bioconjug Chem 2009; 20:1307 - 14; http://dx.doi.org/10.1021/bc900005j; PMID: 19552459
  • Hawkins GD, Cramer CJ, Truhlar DG. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 1996; 100:19824 - 39; http://dx.doi.org/10.1021/jp961710n
  • Eymin B, Gazzeri S, Brambilla C, Brambilla E. Distinct pattern of E2F1 expression in human lung tumours: E2F1 is upregulated in small cell lung carcinoma. Oncogene 2001; 20:1678 - 87; http://dx.doi.org/10.1038/sj.onc.1204242; PMID: 11313916
  • Zhang SY, Liu SC, Al-Saleem LF, Holloran D, Babb J, Guo X, et al. E2F-1: a proliferative marker of breast neoplasia. Cancer Epidemiol Biomarkers Prev 2000; 9:395 - 401; PMID: 10794484
  • Alla V, Engelmann D, Niemetz A, Pahnke J, Schmidt A, Kunz M, et al. E2F1 in melanoma progression and metastasis. J Natl Cancer Inst 2010; 102:127 - 33; http://dx.doi.org/10.1093/jnci/djp458; PMID: 20026813
  • Ma Y, Kurtyka CA, Boyapalle S, Sung SS, Lawrence H, Guida W, et al. A small-molecule E2F inhibitor blocks growth in a melanoma culture model. Cancer Res 2008; 68:6292 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-08-0121; PMID: 18676853
  • Di Cresce C, Figueredo R, Ferguson PJ, Vincent MD, Koropatnick J. Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed. J Pharmacol Exp Ther 2011; 338:952 - 63; http://dx.doi.org/10.1124/jpet.111.183178; PMID: 21673071
  • Pakunlu RI, Wang Y, Saad M, Khandare JJ, Starovoytov V, Minko T. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Control Release 2006; 114:153 - 62; http://dx.doi.org/10.1016/j.jconrel.2006.06.010; PMID: 16889867
  • Garbuzenko OB, Saad M, Betigeri S, Zhang M, Vetcher AA, Soldatenkov VA, et al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm Res 2009; 26:382 - 94; http://dx.doi.org/10.1007/s11095-008-9755-4; PMID: 18958402
  • http://www.ema.europa.eu/docs/en_GB/document_library/EPAR__Scientific_Discussion/human/000564/WC500025606.pdf
  • Minko T, Pakunlu RI, Wang Y, Khandare JJ, Saad M. New generation of liposomal drugs for cancer. Anticancer Agents Med Chem 2006; 6:537 - 52; http://dx.doi.org/10.2174/187152006778699095; PMID: 17100558
  • Wang Y, Saad M, Pakunlu RI, Khandare JJ, Garbuzenko OB, Vetcher AA, et al. Nonviral nanoscale-based delivery of antisense oligonucleotides targeted to hypoxia-inducible factor 1 alpha enhances the efficacy of chemotherapy in drug-resistant tumor. Clin Cancer Res 2008; 14:3607 - 16; http://dx.doi.org/10.1158/1078-0432.CCR-07-2020; PMID: 18519795
  • Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234:779 - 815; http://dx.doi.org/10.1006/jmbi.1993.1626; PMID: 8254673
  • Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 2000; 29:291 - 325; http://dx.doi.org/10.1146/annurev.biophys.29.1.291; PMID: 10940251
  • Sánchez R, Sali A. Comparative protein structure modeling. Introduction and practical examples with modeller. Methods Mol Biol 2000; 143:97 - 129; PMID: 11084904
  • Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A. Reliability of assessment of protein structure prediction methods. Structure 2002; 10:435 - 40; http://dx.doi.org/10.1016/S0969-2126(02)00731-1; PMID: 12005441
  • Zheng N, Fraenkel E, Pabo CO, Pavletich NP. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 1999; 13:666 - 74; http://dx.doi.org/10.1101/gad.13.6.666; PMID: 10090723
  • Lamazière A, Chassaing G, Trugnan G, Ayala-Sanmartin J. Tubular structures in heterogeneous membranes induced by the cell penetrating peptide penetratin. Commun Integr Biol 2009; 2:223 - 4; http://dx.doi.org/10.4161/cib.2.3.8073; PMID: 19641736
  • Macke T, Case DA. Modeling unusual nucleic acid structures. Molecular Modeling of Nucleic Acids. N. Leontes and J. SantaLucia, Jr. Washington, DC, ACS 1998; 379-393.
  • Fraenkel E, Pabo CO. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Nat Struct Biol 1998; 5:692 - 7; PMID: 9699632
  • Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr., et al. The Amber biomolecular simulation programs. J Comput Chem 2005; 26:1668 - 88; http://dx.doi.org/10.1002/jcc.20290; PMID: 16200636
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005; 60:224 - 31; http://dx.doi.org/10.1002/prot.20562; PMID: 15981269
  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 2006; 65:712 - 25; http://dx.doi.org/10.1002/prot.21123; PMID: 16981200
  • Jorgensen W, Chandrasekhar J, Madura J, Klein M. Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 1983; 79:926 - 35; http://dx.doi.org/10.1063/1.445869
  • Darden T, York D, Pedersen L. Particle Mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys 1993; 98:10089 - 92; http://dx.doi.org/10.1063/1.464397
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L. A smooth particle mesh ewald potential. J Chem Phys 1995; 103:8577 - 92; http://dx.doi.org/10.1063/1.470117
  • Miyamoto S, Kollman P. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid Water Models. J Comput Chem 1992; 13:952 - 62; http://dx.doi.org/10.1002/jcc.540130805
  • Berendsen HJC, Postma JPM, vanGunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81:3584 - 90; http://dx.doi.org/10.1063/1.448118
  • Wang J, Morin P, Wang W, Kollman PA. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc 2001; 123:5221 - 30; http://dx.doi.org/10.1021/ja003834q; PMID: 11457384
  • Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res 2009; 37:5917 - 29; http://dx.doi.org/10.1093/nar/gkp608; PMID: 19625494

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.