1,393
Views
43
CrossRef citations to date
0
Altmetric
Review

Emerging roles of Jab1/CSN5 in DNA damage response, DNA repair, and cancer

, &
Pages 256-262 | Received 28 Nov 2013, Accepted 12 Jan 2014, Published online: 04 Feb 2014

References

  • Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40:179 - 204; http://dx.doi.org/10.1016/j.molcel.2010.09.019; PMID: 20965415
  • Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361:1475 - 85; http://dx.doi.org/10.1056/NEJMra0804615; PMID: 19812404
  • Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003; 22:7265 - 79; http://dx.doi.org/10.1038/sj.onc.1206933; PMID: 14576837
  • Pan Y, Zhang Q, Atsaves V, Yang H, Claret FX. Suppression of Jab1/CSN5 induces radio- and chemo-sensitivity in nasopharyngeal carcinoma through changes to the DNA damage and repair pathways. Oncogene 2013; 32:2756 - 66; http://dx.doi.org/10.1038/onc.2012.294; PMID: 22797071
  • Tian L, Peng G, Parant JM, Leventaki V, Drakos E, Zhang Q, Parker-Thornburg J, Shackleford TJ, Dai H, Lin SY, et al. Essential roles of Jab1 in cell survival, spontaneous DNA damage and DNA repair. Oncogene 2010; 29:6125 - 37; http://dx.doi.org/10.1038/onc.2010.345; PMID: 20802511
  • Pan Y, Claret FX. Targeting Jab1/CSN5 in nasopharyngeal carcinoma. Cancer Lett 2012; 326:155 - 60; http://dx.doi.org/10.1016/j.canlet.2012.07.033; PMID: 22867945
  • Pan Y, Zhang Q, Tian L, Wang X, Fan X, Zhang H, Claret FX, Yang H. Jab1/CSN5 negatively regulates p27 and plays a role in the pathogenesis of nasopharyngeal carcinoma. Cancer Res 2012; 72:1890 - 900; http://dx.doi.org/10.1158/0008-5472.CAN-11-3472; PMID: 22350412
  • Sakamoto K, Tominaga Y, Yamauchi K, Nakatsu Y, Sakumi K, Yoshiyama K, Egashira A, Kura S, Yao T, Tsuneyoshi M, et al. MUTYH-null mice are susceptible to spontaneous and oxidative stress induced intestinal tumorigenesis. Cancer Res 2007; 67:6599 - 604; http://dx.doi.org/10.1158/0008-5472.CAN-06-4802; PMID: 17638869
  • Matoka DJ, Yao V, Harya DS, Gregg JL, Robinson AR, Niedernhofer LJ, Parwani AV, Maier C, Bacich DJ. Deficiency of DNA repair nuclease ERCC1-XPF promotes prostate cancer progression in a tissue recombination model. Prostate 2012; 72:1214 - 22; http://dx.doi.org/10.1002/pros.22472; PMID: 22212909
  • Goldsby RE, Lawrence NA, Hays LE, Olmsted EA, Chen X, Singh M, Preston BD. Defective DNA polymerase-delta proofreading causes cancer susceptibility in mice. Nat Med 2001; 7:638 - 9; http://dx.doi.org/10.1038/88963; PMID: 11385474
  • Lin Q, Clark AB, McCulloch SD, Yuan T, Bronson RT, Kunkel TA, Kucherlapati R. Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res 2006; 66:87 - 94; http://dx.doi.org/10.1158/0008-5472.CAN-05-1862; PMID: 16397220
  • Kuznetsov SG, Haines DC, Martin BK, Sharan SK. Loss of Rad51c leads to embryonic lethality and modulation of Trp53-dependent tumorigenesis in mice. Cancer Res 2009; 69:863 - 72; http://dx.doi.org/10.1158/0008-5472.CAN-08-3057; PMID: 19155299
  • Wang Y, Putnam CD, Kane MF, Zhang W, Edelmann L, Russell R, Carrión DV, Chin L, Kucherlapati R, Kolodner RD, et al. Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 2005; 37:750 - 5; http://dx.doi.org/10.1038/ng1587; PMID: 15965476
  • Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 2012; 12:587 - 98; http://dx.doi.org/10.1038/nrc3342; PMID: 22918414
  • Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 2001; 7:263 - 72; http://dx.doi.org/10.1016/S1097-2765(01)00174-5; PMID: 11239455
  • Fackenthal JD, Olopade OI. Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. Nat Rev Cancer 2007; 7:937 - 48; http://dx.doi.org/10.1038/nrc2054; PMID: 18034184
  • Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266:66 - 71; http://dx.doi.org/10.1126/science.7545954; PMID: 7545954
  • Moynahan ME, Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 2010; 11:196 - 207; http://dx.doi.org/10.1038/nrm2851; PMID: 20177395
  • Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75:1027 - 38; http://dx.doi.org/10.1016/0092-8674(93)90546-3; PMID: 8252616
  • Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994; 263:1625 - 9; http://dx.doi.org/10.1126/science.8128251; PMID: 8128251
  • Spry M, Scott T, Pierce H, D’Orazio JA. DNA repair pathways and hereditary cancer susceptibility syndromes. Front Biosci 2007; 12:4191 - 207; http://dx.doi.org/10.2741/2380; PMID: 17485367
  • Levy-Lahad E. Fanconi anemia and breast cancer susceptibility meet again. Nat Genet 2010; 42:368 - 9; http://dx.doi.org/10.1038/ng0510-368; PMID: 20428093
  • Walsh T, King MC. Ten genes for inherited breast cancer. Cancer Cell 2007; 11:103 - 5; http://dx.doi.org/10.1016/j.ccr.2007.01.010; PMID: 17292821
  • Moldovan GL, D’Andrea AD. How the fanconi anemia pathway guards the genome. Annu Rev Genet 2009; 43:223 - 49; http://dx.doi.org/10.1146/annurev-genet-102108-134222; PMID: 19686080
  • Slyskova J, Korenkova V, Collins AR, Prochazka P, Vodickova L, Svec J, Lipska L, Levy M, Schneiderova M, Liska V, et al. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas. Clin Cancer Res 2012; 18:5878 - 87; http://dx.doi.org/10.1158/1078-0432.CCR-12-1380; PMID: 22966016
  • Nussenzweig A, Nussenzweig MC. Origin of chromosomal translocations in lymphoid cancer. Cell 2010; 141:27 - 38; http://dx.doi.org/10.1016/j.cell.2010.03.016; PMID: 20371343
  • Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, Chang HY. Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 2006; 38:421 - 30; http://dx.doi.org/10.1038/ng1752; PMID: 16518402
  • Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136:823 - 37; http://dx.doi.org/10.1016/j.cell.2009.02.024; PMID: 19269363
  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455:1069 - 75; http://dx.doi.org/10.1038/nature07423; PMID: 18948947
  • Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 2008; 14:1291 - 5; http://dx.doi.org/10.1158/1078-0432.CCR-07-2238; PMID: 18316546
  • Neijenhuis S, Verwijs-Janssen M, van den Broek LJ, Begg AC, Vens C. Targeted radiosensitization of cells expressing truncated DNA polymerase beta. Cancer Res 2010; 70:8706 - 14; http://dx.doi.org/10.1158/0008-5472.CAN-09-3901; PMID: 20978197
  • Audeh MW, Carmichael J, Penson RT, Friedlander M, Powell B, Bell-McGuinn KM, Scott C, Weitzel JN, Oaknin A, Loman N, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010; 376:245 - 51; http://dx.doi.org/10.1016/S0140-6736(10)60893-8; PMID: 20609468
  • Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010; 376:235 - 44; http://dx.doi.org/10.1016/S0140-6736(10)60892-6; PMID: 20609467
  • Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434:917 - 21; http://dx.doi.org/10.1038/nature03445; PMID: 15829967
  • Bolderson E, Richard DJ, Zhou BB, Khanna KK. Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 2009; 15:6314 - 20; http://dx.doi.org/10.1158/1078-0432.CCR-09-0096; PMID: 19808869
  • Jiang H, Reinhardt HC, Bartkova J, Tommiska J, Blomqvist C, Nevanlinna H, Bartek J, Yaffe MB, Hemann MT. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 2009; 23:1895 - 909; http://dx.doi.org/10.1101/gad.1815309; PMID: 19608766
  • Martin SA, Hewish M, Lord CJ, Ashworth A. Genomic instability and the selection of treatments for cancer. J Pathol 2010; 220:281 - 9; PMID: 19890832
  • Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 1996; 86:115 - 21; http://dx.doi.org/10.1016/S0092-8674(00)80082-3; PMID: 8689678
  • Karniol B, Chamovitz DA. The COP9 signalosome: from light signaling to general developmental regulation and back. Curr Opin Plant Biol 2000; 3:387 - 93; http://dx.doi.org/10.1016/S1369-5266(00)00101-1; PMID: 11019806
  • Chamovitz DA, Segal D. JAB1/CSN5 and the COP9 signalosome. A complex situation. EMBO Rep 2001; 2:96 - 101; http://dx.doi.org/10.1093/embo-reports/kve028; PMID: 11258719
  • Yu YS, Tang ZH, Pan QC, Chen XH, Liu XN, Zang GQ. Inhibition of Csn3 expression induces growth arrest and apoptosis of hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2012; 69:1173 - 80; http://dx.doi.org/10.1007/s00280-011-1810-x; PMID: 22237956
  • Yoneda-Kato N, Tomoda K, Umehara M, Arata Y, Kato JY. Myeloid leukemia factor 1 regulates p53 by suppressing COP1 via COP9 signalosome subunit 3. EMBO J 2005; 24:1739 - 49; http://dx.doi.org/10.1038/sj.emboj.7600656; PMID: 15861129
  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137:835 - 48; http://dx.doi.org/10.1016/j.cell.2009.05.006; PMID: 19490893
  • Claret FX, Hibi M, Dhut S, Toda T, Karin M. A new group of conserved coactivators that increase the specificity of AP-1 transcription factors. Nature 1996; 383:453 - 7; http://dx.doi.org/10.1038/383453a0; PMID: 8837781
  • Wei N, Deng XW. The COP9 signalosome. Annu Rev Cell Dev Biol 2003; 19:261 - 86; http://dx.doi.org/10.1146/annurev.cellbio.19.111301.112449; PMID: 14570571
  • Freilich S, Oron E, Kapp Y, Nevo-Caspi Y, Orgad S, Segal D, Chamovitz DA. The COP9 signalosome is essential for development of Drosophila melanogaster. Curr Biol 1999; 9:1187 - 90; http://dx.doi.org/10.1016/S0960-9822(00)80023-8; PMID: 10531038
  • Kwok SF, Solano R, Tsuge T, Chamovitz DA, Ecker JR, Matsui M, Deng XW. Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 1998; 10:1779 - 90; PMID: 9811788
  • Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010; 143:951 - 65; http://dx.doi.org/10.1016/j.cell.2010.11.017; PMID: 21145461
  • Sharon M, Mao H, Boeri Erba E, Stephens E, Zheng N, Robinson CV. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 2009; 17:31 - 40; http://dx.doi.org/10.1016/j.str.2008.10.012; PMID: 19141280
  • Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N, Kato JY. The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 2002; 277:2302 - 10; http://dx.doi.org/10.1074/jbc.M104431200; PMID: 11704659
  • Bounpheng MA, Melnikova IN, Dodds SG, Chen H, Copeland NG, Gilbert DJ, Jenkins NA, Christy BA. Characterization of the mouse JAB1 cDNA and protein. Gene 2000; 242:41 - 50; http://dx.doi.org/10.1016/S0378-1119(99)00525-9; PMID: 10721695
  • Maytal-Kivity V, Piran R, Pick E, Hofmann K, Glickman MH. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep 2002; 3:1215 - 21; http://dx.doi.org/10.1093/embo-reports/kvf235; PMID: 12446563
  • Wei N, Serino G, Deng XW. The COP9 signalosome: more than a protease. Trends Biochem Sci 2008; 33:592 - 600; http://dx.doi.org/10.1016/j.tibs.2008.09.004; PMID: 18926707
  • Adler AS, Littlepage LE, Lin M, Kawahara TL, Wong DJ, Werb Z, Chang HY. CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res 2008; 68:506 - 15; http://dx.doi.org/10.1158/0008-5472.CAN-07-3060; PMID: 18199546
  • Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH. Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 2002; 277:2779 - 84; http://dx.doi.org/10.1074/jbc.M108190200; PMID: 11705998
  • Hallstrom TC, Nevins JR. Jab1 is a specificity factor for E2F1-induced apoptosis. Genes Dev 2006; 20:613 - 23; http://dx.doi.org/10.1101/gad.1345006; PMID: 16481464
  • Shackleford TJ, Claret FX. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div 2010; 5:26; http://dx.doi.org/10.1186/1747-1028-5-26; PMID: 20955608
  • Sui L, Dong Y, Ohno M, Watanabe Y, Sugimoto K, Tai Y, Tokuda M. Jab1 expression is associated with inverse expression of p27(kip1) and poor prognosis in epithelial ovarian tumors. Clin Cancer Res 2001; 7:4130 - 5; PMID: 11751512
  • Hsu MC, Huang CC, Chang HC, Hu TH, Hung WC. Overexpression of Jab1 in hepatocellular carcinoma and its inhibition by peroxisome proliferator-activated receptorgamma ligands in vitro and in vivo. Clin Cancer Res 2008; 14:4045 - 52; http://dx.doi.org/10.1158/1078-0432.CCR-07-5040; PMID: 18593980
  • Osoegawa A, Yoshino I, Kometani T, Yamaguchi M, Kameyama T, Yohena T, Maehara Y. Overexpression of Jun activation domain-binding protein 1 in nonsmall cell lung cancer and its significance in p27 expression and clinical features. Cancer 2006; 107:154 - 61; http://dx.doi.org/10.1002/cncr.21961; PMID: 16721818
  • Kouvaraki MA, Korapati AL, Rassidakis GZ, Tian L, Zhang Q, Chiao P, Ho L, Evans DB, Claret FX. Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Res 2006; 66:8581 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-06-0975; PMID: 16951171
  • Kouvaraki MA, Rassidakis GZ, Tian L, Kumar R, Kittas C, Claret FX. Jun activation domain-binding protein 1 expression in breast cancer inversely correlates with the cell cycle inhibitor p27(Kip1). Cancer Res 2003; 63:2977 - 81; PMID: 12782606
  • Gao L, Huang S, Ren W, Zhao L, Li J, Zhi K, Zhang Y, Qi H, Huang C. Jun activation domain-binding protein 1 expression in oral squamous cell carcinomas inversely correlates with the cell cycle inhibitor p27. Med Oncol 2012; 29:2499 - 504; http://dx.doi.org/10.1007/s12032-012-0177-0; PMID: 22311264
  • Ahn J, Hong SA, Lee SE, Kim J, Oh YS, Park SJ, Chung YJ. Cytoplasmic localization of Jab1 and p27 Kip1 might be associated with invasiveness of papillary thyroid carcinoma. Endocr J 2009; 56:707 - 13; http://dx.doi.org/10.1507/endocrj.K08E-372; PMID: 19461157
  • Michel JJ, Xiong Y. Human CUL-1, but not other cullin family members, selectively interacts with SKP1 to form a complex with SKP2 and cyclin A. Cell Growth Differ 1998; 9:435 - 49; PMID: 9663463
  • Nayak S, Santiago FE, Jin H, Lin D, Schedl T, Kipreos ET. The Caenorhabditis elegans Skp1-related gene family: diverse functions in cell proliferation, morphogenesis, and meiosis. Curr Biol 2002; 12:277 - 87; http://dx.doi.org/10.1016/S0960-9822(02)00682-6; PMID: 11864567
  • Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2011; 147:1024 - 39; http://dx.doi.org/10.1016/j.cell.2011.10.035; PMID: 22118460
  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003; 113:357 - 67; http://dx.doi.org/10.1016/S0092-8674(03)00316-7; PMID: 12732143
  • Parrilla-Castellar ER, Arlander SJ, Karnitz L. Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 2004; 3:1009 - 14; http://dx.doi.org/10.1016/j.dnarep.2004.03.032; PMID: 15279787
  • Huang J, Yuan H, Lu C, Liu X, Cao X, Wan M. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J Mol Biol 2007; 371:514 - 27; http://dx.doi.org/10.1016/j.jmb.2007.05.095; PMID: 17583730
  • Melo J, Toczyski D. A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 2002; 14:237 - 45; http://dx.doi.org/10.1016/S0955-0674(02)00312-5; PMID: 11891124
  • Ghabrial A, Ray RP, Schüpbach T. okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 1998; 12:2711 - 23; http://dx.doi.org/10.1101/gad.12.17.2711; PMID: 9732269
  • Doronkin S, Djagaeva I, Beckendorf SK. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development 2002; 129:5053 - 64; PMID: 12397113
  • McKim KS, Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 1998; 12:2932 - 42; http://dx.doi.org/10.1101/gad.12.18.2932; PMID: 9744869
  • Shinohara A, Ogawa H, Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 1992; 69:457 - 70; http://dx.doi.org/10.1016/0092-8674(92)90447-K; PMID: 1581961
  • Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J, Khanna K, Delia D. Activation of ATM and Chk2 kinases in relation to the amount of DNA strand breaks. Oncogene 2004; 23:7691 - 700; http://dx.doi.org/10.1038/sj.onc.1207986; PMID: 15361830
  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273:5858 - 68; http://dx.doi.org/10.1074/jbc.273.10.5858; PMID: 9488723
  • Lee EW, Lee S, Song J. Jab1 has negative effects on p53-mediated genotoxic stresses. BMB Rep 2009; 42:299 - 303; http://dx.doi.org/10.5483/BMBRep.2009.42.5.299; PMID: 19470245
  • Wang B, Matsuoka S, Carpenter PB, Elledge SJ. 53BP1, a mediator of the DNA damage checkpoint. Science 2002; 298:1435 - 8; http://dx.doi.org/10.1126/science.1076182; PMID: 12364621
  • Wang F, Wang Y, Yu X, Yang D, Wang Z, Lu C, Yuan Z, Xiao M, Shen A. Significance of Jab1 expression in human esophageal squamous cell carcinoma. J Clin Gastroenterol 2009; 43:520 - 6; http://dx.doi.org/10.1097/MCG.0b013e3181919245; PMID: 19349901
  • Dong Y, Sui L, Watanabe Y, Yamaguchi F, Hatano N, Tokuda M. Prognostic significance of Jab1 expression in laryngeal squamous cell carcinomas. Clin Cancer Res 2005; 11:259 - 66; PMID: 15671554
  • Hsu MC, Chang HC, Hung WC. HER-2/neu transcriptionally activates Jab1 expression via the AKT/beta-catenin pathway in breast cancer cells. Endocr Relat Cancer 2007; 14:655 - 67; http://dx.doi.org/10.1677/ERC-07-0077; PMID: 17914096
  • Tomoda K, Yoneda-Kato N, Fukumoto A, Yamanaka S, Kato JY. Multiple functions of Jab1 are required for early embryonic development and growth potential in mice. J Biol Chem 2004; 279:43013 - 8; http://dx.doi.org/10.1074/jbc.M406559200; PMID: 15299027
  • Sitte S, Gläsner J, Jellusova J, Weisel F, Panattoni M, Pardi R, Gessner A. JAB1 is essential for B cell development and germinal center formation and inversely regulates Fas ligand and Bcl6 expression. J Immunol 2012; 188:2677 - 86; http://dx.doi.org/10.4049/jimmunol.1101455; PMID: 22327073
  • Wang H, Song W, Hu T, Zhang N, Miao S, Zong S, Wang L. Fank1 interacts with Jab1 and regulates cell apoptosis via the AP-1 pathway. Cell Mol Life Sci 2011; 68:2129 - 39; http://dx.doi.org/10.1007/s00018-010-0559-4; PMID: 20978819
  • Li J, Wang Y, Yang C, Wang P, Oelschlager DK, Zheng Y, Tian DA, Grizzle WE, Buchsbaum DJ, Wan M. Polyethylene glycosylated curcumin conjugate inhibits pancreatic cancer cell growth through inactivation of Jab1. Mol Pharmacol 2009; 76:81 - 90; http://dx.doi.org/10.1124/mol.109.054551; PMID: 19395473
  • Pan Y, Wang M, Bu X, Zuo Y, Wang S, Wang D, Liu Q, Su B, Xu T, Wang C, et al. Curcumin analogue T83 exhibits potent antitumor activity and induces radiosensitivity through inactivation of Jab1 in nasopharyngeal carcinoma. BMC Cancer 2013; 13:323; http://dx.doi.org/10.1186/1471-2407-13-323; PMID: 23815987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.