1,436
Views
19
CrossRef citations to date
0
Altmetric
Extra Views

Terminating protein ubiquitination

Hasta la vista, ubiquitin

&
Pages 3067-3071 | Received 29 Jun 2011, Accepted 15 Jul 2011, Published online: 15 Sep 2011

References

  • Hussain S, Zhang Y, Galardy PJ. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 2009; 8:1688 - 97; http://dx.doi.org/10.4161/cc.8.11.8739; PMID: 19448430
  • Shimizu Y, Okuda-Shimizu Y, Hendershot LM. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol Cell 2010; 40:917 - 26; http://dx.doi.org/10.1016/j.molcel.2010.11.033; PMID: 21172657
  • Kim HC, Huibregtse JM. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol Cell Biol 2009; 29:3307 - 18; http://dx.doi.org/10.1128/MCB.00240-09; PMID: 19364824
  • Wang X, Herr RA, Chua WJ, Lybarger L, Wiertz EJ, Hansen TH. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 2007; 177:613 - 24; http://dx.doi.org/10.1083/jcb.200611063; PMID: 17502423
  • Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005; 309:127 - 30; http://dx.doi.org/10.1126/science.1110340; PMID: 15994556
  • Rubenstein EM, Hochstrasser M. Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle 2010; 9:4282 - 5; http://dx.doi.org/10.4161/cc.9.21.13741; PMID: 20980825
  • Uchiki T, Kim HT, Zhai B, Gygi SP, Johnston JA, O’Bryan JP, et al. The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition. J Biol Chem 2009; 284:12622 - 32; http://dx.doi.org/10.1074/jbc.M900556200; PMID: 19240029
  • Stringer DK, Piper RC. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. J Cell Biol 2011; 192:229 - 42; http://dx.doi.org/10.1083/jcb.201008121; PMID: 21242292
  • Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH. The ESCRT machinery at a glance. J Cell Sci 2009; 122:2163 - 6; http://dx.doi.org/10.1242/jcs.029884; PMID: 19535731
  • Piper RC, Katzmann DJ. Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 2007; 23:519 - 47; http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123319; PMID: 17506697
  • Lauwers E, Erpapazoglou Z, Haguenauer-Tsapis R, André B. The ubiquitin code of yeast permease trafficking. Trends Cell Biol 2010; 20:196 - 204; http://dx.doi.org/10.1016/j.tcb.2010.01.004; PMID: 20138522
  • Kostova Z, Tsai YC, Weissman AM. Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 2007; 18:770 - 9; http://dx.doi.org/10.1016/j.semcdb.2007.09.002; PMID: 17950636
  • Hirsch C, Gauss R, Horn SC, Neuber O, Sommer T. The ubiquitylation machinery of the endoplasmic reticulum. Nature 2009; 458:453 - 60; http://dx.doi.org/10.1038/nature07962; PMID: 19325625
  • Wang L, Dong H, Soroka CJ, Wei N, Boyer JL, Hochstrasser M. Degradation of the bile salt export pump at endoplasmic reticulum in progressive familial intrahepatic cholestasis type II. Hepatology 2008; 48:1558 - 69; http://dx.doi.org/10.1002/hep.22499; PMID: 18798335
  • Ron I, Rapaport D, Horowitz M. Interaction between parkin and mutant glucocerebrosidase variants: a possible link between Parkinson disease and Gaucher disease. Hum Mol Genet 2010; 19:3771 - 81; http://dx.doi.org/10.1093/hmg/ddq292; PMID: 20643691
  • Mehnert M, Sommer T, Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 2010; 32:905 - 13; http://dx.doi.org/10.1002/bies.201000046; PMID: 20806269
  • Shmueli A, Tsai YC, Yang M, Braun MA, Weissman AM. Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. Biochem Biophys Res Commun 2009; 390:758 - 62; http://dx.doi.org/10.1016/j.bbrc.2009.10.045; PMID: 19835843
  • Magnifico A, Ettenberg S, Yang C, Mariano J, Tiwari S, Fang S, et al. WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J Biol Chem 2003; 278:43169 - 77; http://dx.doi.org/10.1074/jbc.M308009200; PMID: 12907674
  • Scott PM, Bilodeau PS, Zhdankina O, Winistorfer SC, Hauglund MJ, Allaman MM, et al. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 2004; 6:252 - 9; http://dx.doi.org/10.1038/ncb1107; PMID: 15039776
  • Erpapazoglou Z, Froissard M, Nondier I, Lesuisse E, Haguenauer-Tsapis R, Belgareh-Touzé N. Substrate- and ubiquitin-dependent trafficking of the yeast siderophore transporter Sit1. Traffic 2008; 9:1372 - 91; http://dx.doi.org/10.1111/j.1600-0854.2008.00766.x; PMID: 18489705
  • Deng Y, Guo Y, Watson H, Au WC, Shakoury-Elizeh M, Basrai MA, et al. Gga2 mediates sequential ubiquitin-independent and ubiquitin-dependent steps in the trafficking of ARN1 from the trans-Golgi network to the vacuole. J Biol Chem 2009; 284:23830 - 41; http://dx.doi.org/10.1074/jbc.M109.030015; PMID: 19574226
  • Lauwers E, Jacob C, André B. K63-linked ubiquitin chains as a specific signal for protein sorting into the multivesicular body pathway. J Cell Biol 2009; 185:493 - 502; http://dx.doi.org/10.1083/jcb.200810114; PMID: 19398763
  • Puertollano R. Interactions of TOM1L1 with the multivesicular body sorting machinery. J Biol Chem 2005; 280:9258 - 64; http://dx.doi.org/10.1074/jbc.M412481200; PMID: 15611048
  • Hoeller D, Crosetto N, Blagoev B, Raiborg C, Tikkanen R, Wagner S, et al. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 2006; 8:163 - 9; http://dx.doi.org/10.1038/ncb1354; PMID: 16429130
  • Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137:133 - 45; http://dx.doi.org/10.1016/j.cell.2009.01.041; PMID: 19345192
  • Wu T, Merbl Y, Huo Y, Gallop JL, Tzur A, Kirschner MW. UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proc Natl Acad Sci U S A 2010; 107:1355 - 60; http://dx.doi.org/10.1073/pnas.0912802107; PMID: 20080579
  • Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010; 17:939 - 47; http://dx.doi.org/10.1038/nsmb.1873; PMID: 20622874
  • Bosanac I, Phu L, Pan B, Zilberleyb I, Maurer B, Dixit VM, et al. Modulation of K11-linkage formation by variable loop residues within UbcH5A. J Mol Biol 2011; 408:420 - 31; http://dx.doi.org/10.1016/j.jmb.2011.03.011; PMID: 21396940
  • Baboshina OV, Haas AL. Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5. J Biol Chem 1996; 271:2823 - 31; http://dx.doi.org/10.1074/jbc.271.5.2823; PMID: 8576261

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.