648
Views
16
CrossRef citations to date
0
Altmetric
Report

ΔNp63α promotes cellular quiescence via induction and activation of Notch3

, , , , &
Pages 3111-3118 | Received 11 Jul 2011, Accepted 11 Jul 2011, Published online: 15 Sep 2011

References

  • Adams G. Investigation of Wnt signaling specifically in the hematopoietic stem cell niche identifies its role in maintaining stem cell quiescence and self-renewal. Regen Med 2008; 3:661 - 664; http://dx.doi.org/10.2217/17460751.3.5.661
  • Ficara F, Murphy MJ, Lin M, Cleary ML. Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2008; 2:484 - 496; PMID: 18462698; http://dx.doi.org/10.1016/j.stem.2008.03.004
  • Horsley V, Aliprantis AO, Polak L, Glimcher LH, Fuchs E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 2008; 132:299 - 310; PMID: 18243104; http://dx.doi.org/10.1016/j.cell.2007.11.047
  • Passegué E, Wagers AJ. Regulating quiescence: new insights into hematopoietic stem cell biology. Dev Cell 2006; 10:415 - 417; PMID: 16580989; http://dx.doi.org/10.1016/j.devcel.2006.03.002
  • He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 2004; 36:1117 - 1121; PMID: 15378062; http://dx.doi.org/10.1038/ng1430
  • Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci USA 2007; 104:10063 - 10068; PMID: 17553962; http://dx.doi.org/10.1073/pnas.0703004104
  • Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 2010; 7:78 - 89; PMID: 20621052; http://dx.doi.org/10.1016/j.stem.2010.04.016
  • Clarke RB, Anderson E, Howell A, Potten CS. Regulation of human breast epithelial stem cells. Cell Prolif 2003; 36:45 - 58; PMID: 14521515; http://dx.doi.org/10.1046/j.1365-2184.36.s.1.5.x
  • De Paiva CS, Pflugfelder SC, Li DQ. Cell size correlates with phenotype and proliferative capacity in human corneal epithelial cells. Stem Cells 2006; 24:368 - 375; PMID: 16123387; http://dx.doi.org/10.1634/stem-cells.2005-0148
  • Li N, Singh S, Cherukuri P, Li H, Yuan Z, Ellisen LW, et al. Reciprocal intraepithelial interactions between TP63 and hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 2008; 26:1253 - 1264; PMID: 18292212; http://dx.doi.org/10.1634/stemcells.2007-0691
  • Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006; 4:83; PMID: 16509772; http://dx.doi.org/10.1371/journal.pbio.0040083
  • Cotsarelis G. Epithelial stem cells: a folliculocentric view. J Invest Dermatol 2006; 126:1459 - 1468; PMID: 16778814; http://dx.doi.org/10.1038/sj.jid.5700376
  • Harmes DC, DiRenzo J. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses?. J Mammary Gland Biol Neoplasia 2009; 14:19 - 27; PMID: 19240987; http://dx.doi.org/10.1007/s10911-009-9111-2
  • Welm B, Behbod F, Goodell MA, Rosen JM. Isolation and characterization of functional mammary gland stem cells. Cell Prolif 2003; 36:17 - 32; PMID: 14521513; http://dx.doi.org/10.1046/j.1365-2184.36.s.1.3.x
  • Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002; 245:42 - 56; PMID: 11969254; http://dx.doi.org/10.1006/dbio.2002.0625
  • Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci 2005; 118:3585 - 3594; PMID: 16105882; http://dx.doi.org/10.1242/jcs.02532
  • Fuchs E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 2009; 137:811 - 819; PMID: 19490891; http://dx.doi.org/10.1016/j.cell.2009.05.002
  • Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116:769 - 778; PMID: 15035980; http://dx.doi.org/10.1016/S0092-8674(04)00255-7
  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science 2004; 303:359 - 363; PMID: 14671312; http://dx.doi.org/10.1126/science.1092436
  • Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7:834 - 846; PMID: 17957189; http://dx.doi.org/10.1038/nrc2256
  • Goldman JM, Green AR, Holyoake T, Jamieson C, Mesa R, Mughal T, et al. Chronic myeloproliferative diseases with and without the Ph chromosome: some unresolved issues. Leukemia 2009; 23:1708 - 1715; PMID: 19641523; http://dx.doi.org/10.1038/leu.2009.142
  • Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, Sone A, et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 2010; 28:275 - 280; PMID: 20160717
  • Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10:25; PMID: 18366788; http://dx.doi.org/10.1186/bcr1982
  • Liu H, Adler AS, Segal E, Chang HY. A transcriptional program mediating entry into cellular quiescence. PLoS Genet 2007; 3:91; PMID: 17559306; http://dx.doi.org/10.1371/journal.pgen.0030091
  • Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 2008; 321:1095 - 1100; PMID: 18719287; http://dx.doi.org/10.1126/science.1155998
  • Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3:429 - 441; PMID: 18940734; http://dx.doi.org/10.1016/j.stem.2008.08.001
  • Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004; 9:145 - 163; PMID: 15300010; http://dx.doi.org/10.1023/B:JOMG.0000037159.63644.81
  • Dotto GP. Notch tumor suppressor function. Oncogene 2008; 27:5115 - 5123; PMID: 18758480; http://dx.doi.org/10.1038/onc.2008.225
  • Efstratiadis A, Szabolcs M, Klinakis A. Notch, Myc and breast cancer. Cell Cycle 2007; 6:418 - 429; PMID: 17329972; http://dx.doi.org/10.4161/cc.6.4.3838
  • Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol 2004; 14:374 - 386; PMID: 15288263; http://dx.doi.org/10.1016/j.semcancer.2004.04.017
  • Robinson GW. Using notches to track mammary epithelial cell homeostasis. Cell Stem Cell 2008; 3:359 - 360; PMID: 18940725; http://dx.doi.org/10.1016/j.stem.2008.09.014
  • Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G, et al. Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992; 6:345 - 355; PMID: 1372276; http://dx.doi.org/10.1101/gad.6.3.345
  • Robbins J, Blondel BJ, Gallahan D, Callahan R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol 1992; 66:2594 - 2599; PMID: 1312643
  • Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21:562 - 577; PMID: 17344417; http://dx.doi.org/10.1101/gad.1484707
  • Buono KD, Robinson GW, Martin C, Shi S, Stanley P, Tanigaki K, et al. The canonical Notch/RBP-J signaling pathway controls the balance of cell lineages in mammary epithelium during pregnancy. Dev Biol 2006; 293:565 - 580; PMID: 16581056; http://dx.doi.org/10.1016/j.ydbio.2006.02.043
  • Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol 2006; 168:973 - 990; PMID: 16507912; http://dx.doi.org/10.2353/ajpath.2006.050416
  • Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 2006; 103:3799 - 3804; PMID: 16501043; http://dx.doi.org/10.1073/pnas.0600065103
  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398:708 - 713; PMID: 10227293; http://dx.doi.org/10.1038/19531
  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing and dominant-negative activities. Mol Cell 1998; 2:305 - 316; PMID: 9774969; http://dx.doi.org/10.1016/S1097-2765(00)80275-0
  • Keyes WM, Pecoraro M, Aranda V, Vernersson-Lindahl E, Li W, Vogel H, et al. DeltaNp63alpha Is an Oncogene that Targets Chromatin Remodeler Lsh to Drive Skin Stem Cell Proliferation and Tumorigenesis. Cell Stem Cell 2011; 8:164 - 176; PMID: 21295273; http://dx.doi.org/10.1016/j.stem.2010.12.009
  • Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 1:324 - 337; PMID: 18371366; http://dx.doi.org/10.1016/j.stem.2007.05.019
  • Dotto GP. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 2009; 9:587 - 595; PMID: 19609265; http://dx.doi.org/10.1038/nrc2675
  • Nguyen BC, Lefort K, Mandinova A, Antonini D, Devgan V, Della Gatta G, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 2006; 20:1028 - 1042; PMID: 16618808; http://dx.doi.org/10.1101/gad.1406006
  • Yu X, Zou J, Ye Z, Hammond H, Chen G, Tokunaga A, et al. Notch signaling activation in human embryonic stem cells is required for embryonic, but not trophoblastic, lineage commitment. Cell Stem Cell 2008; 2:461 - 471; PMID: 18462696; http://dx.doi.org/10.1016/j.stem.2008.03.001
  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009;
  • Passegué E, Rafii S, Herlyn M. Cancer stem cells are everywhere. Nat Med 2009; 15:23; PMID: 19129778; http://dx.doi.org/10.1038/nm0109-23
  • Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98:1777 - 1785; PMID: 17179479; http://dx.doi.org/10.1093/jnci/djj495
  • Essers MA, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol 2010; 4:443 - 450; PMID: 20599449; http://dx.doi.org/10.1016/j.molonc.2010.06.001
  • Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009; 4:37 - 48; PMID: 19128791; http://dx.doi.org/10.1016/j.stem.2008.11.006
  • Tao L, Roberts AL, Dunphy KA, Bigelow C, Yan H, Jerry DJ. Repression of Mammary Stem/Progenitor Cells by p53 is Mediated by Notch and Separable from Apoptotic Activity. Stem Cells 2010;
  • Keyes WM, Mills AA. p63: a new link between senescence and aging. Cell Cycle 2006; 5:260 - 265; PMID: 16434880; http://dx.doi.org/10.4161/cc.5.3.2415
  • Keyes WM, Wu Y, Vogel H, Guo X, Lowe SW, Mills AA. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 2005; 19:1986 - 1999; PMID: 16107615; http://dx.doi.org/10.1101/gad.342305
  • Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV. Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci USA 2010; 107:9660 - 9664; PMID: 20457898; http://dx.doi.org/10.1073/pnas.1002298107
  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2010; 2:344 - 352; PMID: 20606252
  • Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC, et al. Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 2003; 22:7607 - 7616; PMID: 14576823; http://dx.doi.org/10.1038/sj.onc.1207129

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.