715
Views
24
CrossRef citations to date
0
Altmetric
Extra Views

A GSK-3-mediated transcriptional network maintains repression of immediate early genes in quiescent cells

, &
Pages 3072-3077 | Received 13 Jul 2011, Accepted 15 Jul 2011, Published online: 15 Sep 2011

References

  • Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116:1175 - 1186; PMID: 12615961; http://dx.doi.org/10.1242/jcs.00384
  • Frame S, Cohen P. GSK3 takes centre stage more than 20 years after its discovery. Biochem J 2001; 359:1 - 16; PMID: 11563964; http://dx.doi.org/10.1042/0264-6021:3590001
  • Jope RS, Johnson GV. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29:95 - 102; PMID: 15102436; http://dx.doi.org/10.1016/j.tibs.2003.12.004
  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20:781 - 810; PMID: 15473860; http://dx.doi.org/10.1146/annurev.cellbio.20.010403.113126
  • Hardt SE, Tomita H, Katus HA, Sadoshima J. Phosphorylation of eukaryotic translation initiation factor 2B-ε by glycogen synthase kinase-3β regulates β-adrenergic cardiac myocyte hypertrophy. Circ Res 2004; 94:926 - 935; PMID: 15001529; http://dx.doi.org/10.1161/01.RES.0000124977.59827.80
  • Pap M, Cooper GM. Role of translation initiation factor 2B in control of cell survival by the phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase3β signaling pathway. Mol Cell Biol 2002; 22:578 - 586; PMID: 11756553; http://dx.doi.org/10.1128/MCB.22.2.578-86.2002
  • Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12:3499 - 3511; PMID: 9832503; http://dx.doi.org/10.1101/gad.12.22.3499
  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006; 21:749 - 760; PMID: 16543145; http://dx.doi.org/10.1016/j.molcel.2006.02.009
  • Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV. Rapamycin decelerates cellular senescence. Cell Cycle 2009; 8:1888 - 1895; PMID: 19471117; http://dx.doi.org/10.4161/cc.8.12.8606
  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2010; 2:344 - 352; PMID: 20606252
  • Stein GH. T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol 1979; 99:43 - 54; PMID: 222778; http://dx.doi.org/10.1002/jcp.1040990107
  • Tullai JW, Schaffer ME, Mullenbrock S, Kasif S, Cooper GM. Identification of transcription factor binding sites upstream of human genes regulated by the phosphatidylinositol-3-kinase and MEK/ERK signaling pathways. J Biol Chem 2004; 279:20167 - 20177; PMID: 14769801; http://dx.doi.org/10.1074/jbc.M309260200
  • Bromann PA, Korkaya H, Webb CP, Miller J, Calvin TL, Courtneidge SA. Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts. J Biol Chem 2005; 280:10253 - 10263; PMID: 15637050; http://dx.doi.org/10.1074/jbc.M413806200
  • Gu J, Iyer VR. PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli. Genome Biol 2006; 7:42; PMID: 16737555; http://dx.doi.org/10.1186/gb-2006-7-5-r42
  • Hjortsberg L, Lindvall C, Corcoran M, Arulampalam V, Chan D, Thyrell L, et al. Phosphoinositide-3-kinase regulates a subset of interferon-α-stimulated genes. Exp Cell Res 2007; 313:404 - 414; PMID: 17141757; http://dx.doi.org/10.1016/j.yexcr.2006.10.022
  • Jürchott K, Kuban RJ, Krech T, Bluthgen N, Stein U, Walther W, et al. Identification of Y-box binding protein 1 as a core regulator of MEK/ERK pathway-dependent gene signatures in colorectal cancer cells. PLoS Genet 2010; 6:1001231; PMID: 21170361; http://dx.doi.org/10.1371/journal.pgen.1001231
  • Ulici V, James CG, Hoenselaar KD, Beier F. Regulation of gene expression by PI3K in mouse growth plate chondrocytes. PLoS ONE 2010; 5:8866; PMID: 20111593; http://dx.doi.org/10.1371/journal.pone.0008866
  • Tullai JW, Chen J, Schaffer ME, Kamenetsky E, Kasif S, Cooper GM. Glycogen synthase kinase-3 represses cyclic AMP response element-binding protein (CREB)-targeted immediate early genes in quiescent cells. J Biol Chem 2007; 282:9482 - 9491; PMID: 17277356; http://dx.doi.org/10.1074/jbc.M700067200
  • Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet 2004; 5:276 - 287; PMID: 15131651; http://dx.doi.org/10.1038/nrg1315
  • Sauer T, Shelest E, Wingender E. Evaluating phylogenetic footprinting for human-rodent comparisons. Bioinformatics 2006; 22:430 - 437; PMID: 16332706; http://dx.doi.org/10.1093/bioinformatics/bti819
  • Graham JR, Tullai JW, Cooper GM. GSK-3 represses growth factor-inducible genes by inhibiting NFκB in quiescent cells. J Biol Chem 2010; 285:4472 - 4480; PMID: 20018891; http://dx.doi.org/10.1074/jbc.M109.053785
  • Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB, Montminy M. Genome-wide analysis of CREB target genes reveals A core promoter requirement for cAMP responsiveness. Mol Cell 2003; 11:1101 - 1108; PMID: 12718894; http://dx.doi.org/10.1016/S1097-2765(03)00134-5
  • Bullock BP, Habener JF. Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation and increases net charge. Biochemistry 1998; 37:3795 - 3809; PMID: 9521699; http://dx.doi.org/10.1021/bi970982t
  • Grimes CA, Jope RS. CREB DNA binding activity is inhibited by glycogen synthase kinase-3β and facilitated by lithium. J Neurochem 2001; 78:1219 - 1232; PMID: 11579131; http://dx.doi.org/10.1046/j.14714159.2001.00495.x
  • Liang MH, Chuang DM. Differential roles of glycogen synthase kinase-3 isoforms in the regulation of transcriptional activation. J Biol Chem 2006; 281:30479 - 30484; PMID: 16912034; http://dx.doi.org/10.1074/jbc.M607468200
  • Martin M, Rehani K, Jope RS, Michalek SM. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 2005; 6:777 - 784; PMID: 16007092; http://dx.doi.org/10.1038/ni1221
  • Schreiber J, Jenner RG, Murray HL, Gerber GK, Gifford DK, Young RA. Coordinated binding of NFκB family members in the response of human cells to lipopolysaccharide. Proc Natl Acad Sci USA 2006; 103:5899 - 5904; PMID: 16595631; http://dx.doi.org/10.1073/pnas.0510996103
  • Hayden MS, Ghosh S. Shared principles in NFκB signaling. Cell 2008; 132:344 - 362; PMID: 18267068; http://dx.doi.org/10.1016/j.cell.2008.01.020
  • Gong R, Rifai A, Ge Y, Chen S, Dworkin LD. Hepatocyte growth factor suppresses proinflammatory NFκB activation through GSK3β inactivation in renal tubular epithelial cells. J Biol Chem 2008; 283:7401 - 7410; PMID: 18201972; http://dx.doi.org/10.1074/jbc.M710396200
  • Götschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, et al. Inhibition of GSK3 differentially modulates NFκB, CREB, AP-1 and β-catenin signaling in hepatocytes, but fails to promote TNFα-induced apoptosis. Exp Cell Res 2008; 314:1351 - 1366; PMID: 18261723; http://dx.doi.org/10.1016/j.yexcr.2007.12.015
  • Schwabe RF, Brenner DA. Role of glycogen synthase kinase-3 in TNFα-induced NFκB activation and apoptosis in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2002; 283:204 - 211; PMID: 12065308
  • Steinbrecher KA, Wilson W 3rd, Cogswell PC, Baldwin AS. Glycogen synthase kinase 3β functions to specify gene-specific, NFκB-dependent transcription. Mol Cell Biol 2005; 25:8444 - 8455; PMID: 16166627; http://dx.doi.org/10.1128/MCB.25.19.844455.2005
  • Bournat JC, Brown AM, Soler AP. Wnt-1 dependent activation of the survival factor NFκB in PC12 cells. J Neurosci Res 2000; 61:21 - 32; PMID: 10861796; http://dx.doi.org/10.1002/1097-4547(20000701)61:1<21::AIDJNR3>3.0.CO;2-7
  • Sanchez JF, Sniderhan LF, Williamson AL, Fan S, Chakraborty-Sett S, Maggirwar SB. Glycogen synthase kinase 3β-mediated apoptosis of primary cortical astrocytes involves inhibition of nuclear factor κB signaling. Mol Cell Biol 2003; 23:4649 - 4662; PMID: 12808104; http://dx.doi.org/10.1128/MCB.23.13.4649-62.2003
  • Bachelder RE, Yoon SO, Franci C, de Herreros AG, Mercurio AM. Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol 2005; 168:29 - 33; PMID: 15631989; http://dx.doi.org/10.1083/jcb.200409067
  • Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991; 1072:129 - 157; PMID: 1751545
  • Tullai JW, Tacheva S, Owens LJ, Graham JR, Cooper GM. AP-1 Is a component of the transcriptional network regulated by GSK-3 in quiescent cells. PLoS ONE 2011; 6:20150; PMID: 21647439; http://dx.doi.org/10.1371/journal.pone.0020150
  • Cohen DR, Curran T. fra-1: a serum-inducible, cellular immediate early gene that encodes a fosrelated antigen. Mol Cell Biol 1988; 8:2063 - 2069; PMID: 3133553
  • Kovary K, Bravo R. Expression of different Jun and Fos proteins during the G0-to-G1 transition in mouse fibroblasts: in vitro and in vivo associations. Mol Cell Biol 1991; 11:2451 - 2459; PMID: 1901942
  • Müller R, Bravo R, Burckhardt J, Curran T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 1984; 312:716 - 720; PMID: 6334806; http://dx.doi.org/10.1038/312716a0
  • Nishina H, Sato H, Suzuki T, Sato M, Iba H. Isolation and characterization of fra-2, an additional member of the fos gene family. Proc Natl Acad Sci USA 1990; 87:3619 - 3623; PMID: 2110368; http://dx.doi.org/10.1073/pnas.87.9.3619
  • Morton S, Davis RJ, McLaren A, Cohen P. A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J 2003; 22:3876 - 3886; PMID: 12881422; http://dx.doi.org/10.1093/emboj/cdg388
  • Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, et al. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 1991; 64:573 - 584; PMID: 1846781; http://dx.doi.org/10.1016/0092-8674(91)90241-P
  • Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr. The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 2005; 8:25 - 33; PMID: 16023596; http://dx.doi.org/10.1016/j.ccr.2005.06.005
  • Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 2001; 20:2438 - 2452; PMID: 11402339; http://dx.doi.org/10.1038/sj.onc.1204385
  • Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3:859 - 868; PMID: 14668816; http://dx.doi.org/10.1038/nrc1209
  • Ghosh S, Karin M. Missing pieces in the NFκB puzzle. Cell 2002; 109:81 - 96; PMID: 11983155; http://dx.doi.org/10.1016/S0092-8674(02)00703-1
  • Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci 2005; 28:436 - 445; PMID: 15982754; http://dx.doi.org/10.1016/j.tins.2005.06.005
  • Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2:599 - 609; PMID: 11483993; http://dx.doi.org/10.1038/35085068
  • Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH. Glycogen synthase kinase-3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene 1993; 8:833 - 840; PMID: 8384354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.