1,186
Views
47
CrossRef citations to date
0
Altmetric
Report

MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity

, , , &
Pages 3176-3188 | Received 20 Jul 2011, Accepted 28 Jul 2011, Published online: 15 Sep 2011

References

  • Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell 2009; 137:413 - 431; PMID: 19410540; http://dx.doi.org/10.1016/j.cell.2009.04.037
  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356:215 - 221; PMID: 1552940; http://dx.doi.org/10.1038/356215a0
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991; 253:49 - 53; PMID: 1905840; http://dx.doi.org/10.1126/science.1905840
  • el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54:1169 - 1174; PMID: 8118801
  • Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80:293 - 299; PMID: 7834749; http://dx.doi.org/10.1016/0092-8674(95)90412-3
  • Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7:683 - 694; PMID: 11463392; http://dx.doi.org/10.1016/S1097-2765(01)00214-3
  • Ho J, Benchimol S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10:404 - 408; PMID: 12719716; http://dx.doi.org/10.1038/sj.cdd.4401191
  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M, et al. Direct p53 Transcriptional Repression: In Vivo Analysis of CCAAT-Containing G2/M Promoters. Mol Cell Biol 2005; 25:3737 - 3751; PMID: 15831478; http://dx.doi.org/10.1128/MCB.25.9.373751.2005
  • Böhlig L, Rother K. One Function-Multiple Mechanisms: The Manifold Activities of p53 as a Transcriptional Repressor. J Biomed Biotechnol 2011; 2011:464916; PMID: 21436991; http://dx.doi.org/10.1155/2011/464916
  • Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH, et al. p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 1999; 274:29677 - 29682; PMID: 10514438; http://dx.doi.org/10.1074/jbc.274.42.29677
  • Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mossner J, et al. The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res 2000; 28:4410 - 4418; PMID: 11071927; http://dx.doi.org/10.1093/nar/28.22.4410
  • Badie C, Bourhis J, Sobczak-Thepot J, Haddada H, Chiron M, Janicot M, et al. p53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line. Br J Cancer 2000; 82:642 - 650; PMID: 10682678
  • Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387:296 - 299; PMID: 9153395; http://dx.doi.org/10.1038/387296a0
  • Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997; 387:299 - 303; PMID: 9153396; http://dx.doi.org/10.1038/387299a0
  • Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378:206 - 208; PMID: 7477327; http://dx.doi.org/10.1038/378206a0
  • Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378:203 - 206; PMID: 7477326; http://dx.doi.org/10.1038/378203a0
  • Alarcon-Vargas D, Ronai Z. p53-Mdm2—the affair that never ends. Carcinogenesis 2002; 23:541 - 547; PMID: 11960904; http://dx.doi.org/10.1093/carcin/23.4.541
  • Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004; 4:793 - 805; PMID: 15510160; http://dx.doi.org/10.1038/nrc1455
  • Meek DW, Knippschild U. Posttranslational modification of MDM2. Mol Cancer Res 2003; 1:1017 - 1026; PMID: 14707285
  • Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3:577 - 587; PMID: 12842086; http://dx.doi.org/10.1016/S15356108(03)00134-X
  • Honda R, Yasuda H. Association of p19(ARF) with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J 1999; 18:22 - 27; PMID: 9878046; http://dx.doi.org/10.1093/emboj/18.1.22
  • Gu J, Nie L, Wiederschain D, Yuan ZM. Identification of p53 sequence elements that are required for MDM2-mediated nuclear export. Mol Cell Biol 2001; 21:8533 - 8546; PMID: 11713288; http://dx.doi.org/10.1128/MCB.21.24.8533-46.2001
  • Lohrum MA, Woods DB, Ludwig RL, Balint E, Vousden KH. C-terminal ubiquitination of p53 contributes to nuclear export. Mol Cell Biol 2001; 21:8521 - 8532; PMID: 11713287; http://dx.doi.org/10.1128/MCB.21.24.8521-32.2001
  • Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 1993; 362:857 - 860; PMID: 8479525; http://dx.doi.org/10.1038/362857a0
  • Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP. Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 2004; 118:83 - 97; PMID: 15242646; http://dx.doi.org/10.1016/j.cell.2004.06.016
  • Liu G, Xirodimas DP. NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 2010; 29:2252 - 2261; PMID: 20101219; http://dx.doi.org/10.1038/onc.2009.494
  • Chen L, Chen J. MDM2-ARF complex regulates p53 sumoylation. Oncogene 2003; 22:5348 - 5357; PMID: 12917636; http://dx.doi.org/10.1038/sj.onc.1206851
  • Vivo M, Di Costanzo A, Fortugno P, Pollice A, Calabro V, La Mantia G. Downregulation of DeltaNp63alpha in keratinocytes by p14ARF-mediated SUMO-conjugation and degradation. Cell Cycle 2009; 8:3537 - 3543; PMID: 19829080; http://dx.doi.org/10.4161/cc.8.21.9954
  • Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach DA. M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 2004; 279:27233 - 27238; PMID: 15123604; http://dx.doi.org/10.1074/jbc.M402273200
  • Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 2005; 337:517 - 520; PMID: 16198310; http://dx.doi.org/10.1016/j.bbrc.2005.09.090
  • Ayaydin F, Dasso M. Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol Biol Cell 2004; 15:5208 - 5218; PMID: 15456902; http://dx.doi.org/10.1091/mbc.E04-07-0589
  • Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 2000; 275:6252 - 6258; PMID: 10692421; http://dx.doi.org/10.1074/jbc.275.9.6252
  • Tempé D, Piechaczyk M, Bossis G. SUMO under stress. Biochem Soc Trans 2008; 36:874 - 878; PMID: 18793154; http://dx.doi.org/10.1042/BST0360874
  • Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein sumoylation. Biochem J 2010; 428:133 - 145; PMID: 20462400; http://dx.doi.org/10.1042/BJ20100158
  • Stehmeier P, Muller S. Regulation of p53 family members by the ubiquitin-like SUMO system. DNA Repair (Amst) 2009; 8:491 - 498; PMID: 19213614; http://dx.doi.org/10.1016/j.dnarep.2009.01.002
  • Melchior F, Hengst L. SUMO-1 and p53. Cell Cycle 2002; 1:245 - 249; PMID: 12429940; http://dx.doi.org/10.4161/cc.1.4.131
  • Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT. SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18:6455 - 6461; PMID: 10562557; http://dx.doi.org/10.1093/emboj/18.22.6455
  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M, et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18:6462 - 6471; PMID: 10562558; http://dx.doi.org/10.1093/emboj/18.22.6462
  • Schmidt D, Muller S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 2002; 99:2872 - 2877; PMID: 11867732; http://dx.doi.org/10.1073/pnas.052559499
  • Kwek SS, Derry J, Tyner AL, Shen Z, Gudkov AV. Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 2001; 20:2587 - 2599; PMID: 11420669; http://dx.doi.org/10.1038/sj.onc.1204362
  • Wu SY, Chiang CM. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009; 28:1246 - 1259; PMID: 19339993; http://dx.doi.org/10.1038/emboj.2009.83
  • Cheema A, Knights CD, Rao M, Catania J, Perez R, Simons B, et al. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371 - 384; PMID: 20458745; http://dx.doi.org/10.1002/jcp.22224
  • Weger S, Hammer E, Heilbronn R. Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 2005; 579:5007 - 5012; PMID: 16122737; http://dx.doi.org/10.1016/j.febslet.2005.07.088
  • Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R, et al. The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell 2006; 22:783 - 794; PMID: 16793547; http://dx.doi.org/10.1016/j.molcel.2006.05.016
  • Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011; 30:1108 - 1116; PMID: 20972456; http://dx.doi.org/10.1038/onc.2010.462
  • Pennella MA, Liu Y, Woo JL, Kim CA, Berk AJ. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210 - 12225; PMID: 20861261; http://dx.doi.org/10.1128/JVI.01442-10
  • Li T, Santockyte R, Shen RF, Tekle E, Wang G, Yang DC, et al. Expression of SUMO-2/3 induced senescence through p53- and pRB-mediated pathways. J Biol Chem 2006; 281:36221 - 36227; PMID: 17012228; http://dx.doi.org/10.1074/jbc.M608236200
  • Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, Ellison TJ, et al. Kaposi's sarcoma associated herpesvirus (KSHV) encodes a SUMO E3 ligase which is SIM-dependent and SUMO-2/3-specific. J Biol Chem 2010; 285:5266 - 5273; PMID: 20034935; http://dx.doi.org/10.1074/jbc.M109.088088
  • Böttger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ, Jochemsen AG, et al. Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 1999; 18:189 - 199; PMID: 9926934; http://dx.doi.org/10.1038/sj.onc.1202281
  • Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett 1999; 447:5 - 9; PMID: 10218570; http://dx.doi.org/10.1016/S0014-5793(99)00254-9
  • Badciong JC, Haas AL. MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination. J Biol Chem 2002; 277:49668 - 49675; PMID: 12393902; http://dx.doi.org/10.1074/jbc.M208593200
  • Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ, Pavletich N, et al. The Mdm2 RING domain C terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J 2007; 26:90 - 101; PMID: 17170710; http://dx.doi.org/10.1038/sj.emboj.7601465
  • Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem 2000; 275:8945 - 8951; PMID: 10722742; http://dx.doi.org/10.1074/jbc.275.12.8945
  • Kawai H, Wiederschain D, Yuan ZM. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol Cell Biol 2003; 23:4939 - 4947; PMID: 12832479; http://dx.doi.org/10.1128/MCB.23.14.4939-47.2003
  • Meulmeester E, Frenk R, Stad R, de Graaf P, Marine JC, Vousden KH, et al. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol Cell Biol 2003; 23:4929 - 4938; PMID: 12832478; http://dx.doi.org/10.1128/MCB.23.14.4929-38.2003
  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303:844 - 848; PMID: 14704432; http://dx.doi.org/10.1126/science.1092472
  • Kitagaki J, Agama KK, Pommier Y, Yang Y, Weissman AM. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2. Mol Cancer Ther 2008; 7:2445 - 2454; PMID: 18723490; http://dx.doi.org/10.1158/1535-7163.MCT-08-0063
  • Desterro JM, Thomson J, Hay RT. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 1997; 417:297 - 300; PMID: 9409737; http://dx.doi.org/10.1016/S0014-5793(97)01305-7
  • Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 2001; 276:12654 - 12659; PMID: 11124955; http://dx.doi.org/10.1074/jbc.M009476200
  • Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH, et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 2001; 276:35368 - 35374; PMID: 11451954; http://dx.doi.org/10.1074/jbc.M104214200
  • Ulrich HD. The fast-growing business of SUMO chains. Mol Cell 2008; 32:301 - 305; PMID: 18995828; http://dx.doi.org/10.1016/j.molcel.2008.10.010
  • Kuo ML, den Besten W, Thomas MC, Sherr CJ. Arf-induced turnover of the nucleolar nucleophosminassociated SUMO-2/3 protease Senp3. Cell Cycle 2008; 7:3378 - 3387; PMID: 18948745; http://dx.doi.org/10.4161/cc.7.21.6930
  • Rizos H, Woodruff S, Kefford RF. p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners. Cell Cycle 2005; 4:597 - 603; PMID: 15876874; http://dx.doi.org/10.4161/cc.4.4.1588
  • Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH. Identification of a cryptic nucleolar-localization signal in MDM2. Nat Cell Biol 2000; 2:179 - 181; PMID: 10707090; http://dx.doi.org/10.1038/35004057
  • Carter S, Vousden KH. p53-Ubl fusions as models of ubiquitination, sumoylation and neddylation of p53. Cell Cycle 2008; 7:2519 - 2528; PMID: 18719371; http://dx.doi.org/10.4161/cc.7.16.6422
  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75:817 - 825; PMID: 8242752; http://dx.doi.org/10.1016/00928674(93)90500-P
  • Deng Z, Wan M, Sui G. PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger. Mol Cell Biol 2007; 27:3780 - 3792; PMID: 17353273; http://dx.doi.org/10.1128/MCB.01761-06
  • Azuma Y, Arnaoutov A, Dasso M. SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 2003; 163:477 - 487; PMID: 14597774; http://dx.doi.org/10.1083/jcb.200304088
  • Lo D, Lu H. Nucleostemin: Another nucleolar “Twister” of the p53-MDM2 loop. Cell Cycle 2010; 9:3227 - 3232; PMID: 20703089; http://dx.doi.org/10.4161/cc.9.16.12605
  • Nishida T, Yamada Y. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation. Biochem Biophys Res Commun 2011; 406:285 - 291; PMID: 21316347; http://dx.doi.org/10.1016/j.bbrc.2011.02.034
  • Cheng Q, Chen J. Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 2010; 9:472 - 478; PMID: 20081365; http://dx.doi.org/10.4161/cc.9.3.10556
  • Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 2006; 5:2298 - 2310; PMID: 17000644; http://dx.doi.org/10.1074/mcp.M600212-MCP200
  • Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281:16117 - 16127; PMID: 16524884; http://dx.doi.org/10.1074/jbc.M512757200
  • Vertegaal AC. SUMO chains: polymeric signals. Biochem Soc Trans 2010; 38:46 - 49; PMID: 20074033; http://dx.doi.org/10.1042/BST0380046
  • Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, et al. PKC{zeta} mediates disturbed flow-induced endothelial apoptosis via p53 sumoylation. J Cell Biol 2011; 193:867 - 884; PMID: 21624955; http://dx.doi.org/10.1083/jcb.201010051
  • Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA. A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 2005; 25:4272 - 4282; PMID: 15870296; http://dx.doi.org/10.1128/MCB.25.10.4272-82.2005
  • Garcia-Dominguez M, Reyes JC. SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim Biophys Acta 2009; 1789:451 - 459; PMID: 19616654
  • Huang B, Vassilev LT. Reduced transcriptional activity in the p53 pathway of senescent cells revealed by the MDM2 antagonist nutlin-3. Aging 2009; 1:845 - 854; PMID: 20157557
  • Krummel KA, Lee CJ, Toledo F, Wahl GM. The C-terminal lysines fine-tune p53 stress responses in a mouse model but are not required for stability control or transactivation. Proc Natl Acad Sci USA 2005; 102:10188 - 10193; PMID: 16006521; http://dx.doi.org/10.1073/pnas.0503068102
  • Mauri F, McNamee LM, Lunardi A, Chiacchiera F, Del Sal G, Brodsky MH, et al. Modification of Drosophila p53 by SUMO modulates its transactivation and proapoptotic functions. J Biol Chem 2008; 283:20848 - 20856; PMID: 18492669; http://dx.doi.org/10.1074/jbc.M710186200
  • Yuan H, Zhou J, Deng M, Liu X, Le Bras M, de The H, et al. Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res 2010; 20:185 - 196; PMID: 19704416; http://dx.doi.org/10.1038/cr.2009.101
  • Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007; 27:8284 - 8295; PMID: 17908790; http://dx.doi.org/10.1128/MCB.00050-07
  • Carter S, Bischof O, Dejean A, Vousden KH. C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol 2007; 9:428 - 435; PMID: 17369817; http://dx.doi.org/10.1038/ncb1562
  • Chen J, Lin J, Levine AJ. Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Mol Med 1995; 1:142 - 152; PMID: 8529093
  • Bálint E, Bates S, Vousden KH. Mdm2 binds p73 alpha without targeting degradation. Oncogene 1999; 18:3923 - 3929; PMID: 10435614; http://dx.doi.org/10.1038/sj.onc.1202781
  • Muller PAJ, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S, et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139:1327 - 1341; PMID: 20064378; http://dx.doi.org/10.1016/j.cell.2009.11.026
  • Kubbutat MH, Ludwig RL, Levine AJ, Vousden KH. Analysis of the degradation function of Mdm2. Cell Growth Differ 1999; 10:87 - 92; PMID: 10074902
  • Cesková P, Chichger H, Wallace M, Vojtesek B, Hupp TR. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding. J Mol Biol 2006; 357:442 - 456; PMID: 16438982; http://dx.doi.org/10.1016/j.jmb.2005.12.026
  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 1998; 17:5001 - 5014; PMID: 9724636; http://dx.doi.org/10.1093/emboj/17.17.5001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.