804
Views
21
CrossRef citations to date
0
Altmetric
Report

Artemis interacts with the Cul4A-DDB1DDB2 ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27

Pages 4098-4109 | Received 22 Jul 2011, Accepted 26 Sep 2011, Published online: 01 Dec 2011

References

  • Bonatto D, Revers LF, Brendel M, Henriques JA. The eukaryotic Pso2/Snm1/Artemis proteins and their function as genomic and cellular caretakers. Braz J Med Biol Res 2005; 38:321 - 334; PMID: 15761611; http://dx.doi.org/10.1590/S0100-879X2005000300002
  • Cattell E, Sengerova B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: From yeast to man. Environ Mol Mutagen 2010; 51:635 - 645; PMID: 20175117
  • Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 2007; 42:67 - 93; PMID: 17453916; http://dx.doi.org/10.1080/10409230701279118
  • Yu Y, Mahaney BL, Yano K, Ye R, Fang S, Douglas P, et al. DNA-PK and ATM phosphorylation sites in XLF/Cernunnos are not required for repair of DNA double strand breaks. DNA Repair (Amst) 2008; 7:1680 - 1692; PMID: 18644470; http://dx.doi.org/10.1016/j.dnarep.2008.06.015
  • Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015 - 1029; PMID: 20528238; http://dx.doi.org/10.2217/fon.10.47
  • Callebaut I, Moshous D, Mornon JP, de Villartay JP. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 2002; 30:3592 - 3601; PMID: 12177301; http://dx.doi.org/10.1093/nar/gkf470
  • Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001; 105:177 - 186; PMID: 11336668; http://dx.doi.org/10.1016/S0092-8674(01)00309-9
  • Akhter S, Lam YC, Chang S, Legerski RJ. The telomeric protein SNM1B/Apollo is required for normal cell proliferation and embryonic development. Aging Cell 2010; 9:1047 - 1056; PMID: 20854421; http://dx.doi.org/10.1111/j.1474-9726.2010.00631.x
  • Lam YC, Akhter S, Gu P, Ye J, Poulet A, Giraud-Panis MJ, et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J 2010; 29:2230 - 2241; PMID: 20551906; http://dx.doi.org/10.1038/emboj.2010.58
  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ, et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis and proteins locating to gamma-H2AX foci. Mol Cell 2004; 16:715 - 724; PMID: 15574327; http://dx.doi.org/10.1016/j.molcel.2004.10.029
  • Wakasugi M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T, et al. DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 2002; 277:1637 - 1640; PMID: 11705987; http://dx.doi.org/10.1074/jbc.C100610200
  • Cavazzana-Calvo M, Le Deist F, De Saint Basile G, Papadopoulo D, De Villartay JP, Fischer A. Increased radiosensitivity of granulocyte macrophage colony-forming units and skin fibroblasts in human autosomal recessive severe combined immunodeficiency. J Clin Invest 1993; 91:1214 - 1218; PMID: 8450050; http://dx.doi.org/10.1172/JCI116282
  • Moshous D, Li L, Chasseval R, Philippe N, Jabado N, Cowan MJ, et al. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum Mol Genet 2000; 9:583 - 588; PMID: 10699181; http://dx.doi.org/10.1093/hmg/9.4.583
  • Akhter S, Richie CT, Deng JM, Brey E, Zhang X, Patrick C Jr, et al. Deficiency in SNM1 abolishes an early mitotic checkpoint induced by spindle stress. Mol Cell Biol 2004; 24:10448 - 10455; PMID: 15542852; http://dx.doi.org/10.1128/MCB.24.23.10448-55.2004
  • Liu L, Akhter S, Bae JB, Mukhopadhyay SS, Richie CT, Liu X, et al. SNM1B/Apollo interacts with astrin and is required for the prophase cell cycle checkpoint. Cell Cycle 2009; 8:628 - 638; PMID: 19197158; http://dx.doi.org/10.4161/cc.8.4.7791
  • Geng L, Zhang X, Zheng S, Legerski RJ. Artemis links ATM to G2/M checkpoint recovery via regulation of Cdk1-cyclin B. Mol Cell Biol 2007; 27:2625 - 2635; PMID: 17242184; http://dx.doi.org/10.1128/MCB.02072-06
  • Wang H, Zhang X, Geng L, Teng L, Legerski RJ. Artemis regulates cell cycle recovery from the S phase checkpoint by promoting degradation of cyclin E. J Biol Chem 2009; 284:18236 - 18243; PMID: 19423708; http://dx.doi.org/10.1074/jbc.M109.002584
  • Zhang X, Succi J, Feng Z, Prithivirajsingh S, Story MD, Legerski RJ. Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response. Mol Cell Biol 2004; 24:9207 - 9220; PMID: 15456891; http://dx.doi.org/10.1128/MCB.24.20.9207-20.2004
  • Zhang X, Zhu Y, Geng L, Wang H, Legerski RJ. Artemis is a negative regulator of p53 in response to oxidative stress. Oncogene 2009; 28:2196 - 2204; PMID: 19398950; http://dx.doi.org/10.1038/onc.2009.100
  • Borriello A, Cucciolla V, Oliva A, Zappia V, Della Ragione F. p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 2007; 6:1053 - 1061; PMID: 17426451; http://dx.doi.org/10.4161/cc.6.9.4142
  • Cánepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, et al. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007; 59:419 - 426; PMID: 17654117; http://dx.doi.org/10.1080/15216540701488358
  • Alkarain A, Jordan R, Slingerland J. p27 deregulation in breast cancer: prognostic significance and implications for therapy. J Mammary Gland Biol Neoplasia 2004; 9:67 - 80; PMID: 15082919; http://dx.doi.org/10.1023/B:JOMG.0000023589.00994.5e
  • Alkarain A, Slingerland J. Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 2004; 6:13 - 21; PMID: 14680481; http://dx.doi.org/10.1186/bcr722
  • Lee J, Kim SS. The function of p27KIP1 during tumor development. Exp Mol Med 2009; 41:765 - 771; PMID: 19887899; http://dx.doi.org/10.3858/emm.2009.41.11.102
  • Guan X, Wang Y, Xie R, Chen L, Bai J, Lu J, et al. p27 as a prognostic factor in breast cancer: a systematic review and meta-analysis. J Cell Mol Med 2010; 14:944 - 953; PMID: 19298520; http://dx.doi.org/10.1111/j.1582-4934.2009.00730.x
  • Belletti B, Nicoloso MS, Schiappacassi M, Chimienti E, Berton S, Lovat F, et al. p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem 2005; 12:1589 - 1605; PMID: 16022660; http://dx.doi.org/10.2174/0929867054367149
  • Carrano AC, Eytan E, Hershko A, Pagano M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1:193 - 199; PMID: 10559916; http://dx.doi.org/10.1038/12013
  • Sutterlüty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1999; 1:207 - 214; PMID: 10559918; http://dx.doi.org/10.1038/12027
  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 1999; 9:661 - 664; PMID: 10375532; http://dx.doi.org/10.1016/S0960-9822(99)80290-5
  • Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 2004; 6:1229 - 1235; PMID: 15531880; http://dx.doi.org/10.1038/ncb1194
  • Bondar T, Kalinina A, Khair L, Kopanja D, Nag A, Bagchi S, et al. Cul4A and DDB1 associate with Skp2 to target p27Kip1 for proteolysis involving the COP9 signalosome. Mol Cell Biol 2006; 26:2531 - 2539; PMID: 16537899; http://dx.doi.org/10.1128/MCB.26.7.2531-9.2006
  • Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit and differentiation during erythropoiesis. Blood 2006; 107:4291 - 4299; PMID: 16467204; http://dx.doi.org/10.1182/blood-2005-08-3349
  • Higa LA, Yang X, Zheng J, Banks D, Wu M, Ghosh P, et al. Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle 2006; 5:71 - 77; PMID: 16322693; http://dx.doi.org/10.4161/cc.5.1.2266
  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003; 113:357 - 367; PMID: 12732143; http://dx.doi.org/10.1016/S0092-8674(03)00316-7
  • McCall CM, Hu J, Xiong Y. Recruiting substrates to cullin 4-dependent ubiquitin ligases by DDB1. Cell Cycle 2005; 4:27 - 29; PMID: 15655366; http://dx.doi.org/10.4161/cc.4.1.1396
  • O'Connell BC, Harper JW. Ubiquitin proteasome system (UPS): what can chromatin do for you?. Curr Opin Cell Biol 2007; 19:206 - 214; PMID: 17314036; http://dx.doi.org/10.1016/j.ceb.2007.02.014
  • Jin J, Arias EE, Chen J, Harper JW, Walter JC. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 2006; 23:709 - 721; PMID: 16949367; http://dx.doi.org/10.1016/j.molcel.2006.08.010
  • Lee J, Zhou P. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell 2007; 26:775 - 780; PMID: 17588513; http://dx.doi.org/10.1016/j.molcel.2007.06.001
  • Chu G, Chang E. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 1988; 242:564 - 567; PMID: 3175673; http://dx.doi.org/10.1126/science.3175673
  • Hwang BJ, Chu G. Purification and characterization of a human protein that binds to damaged DNA. Biochemistry 1993; 32:1657 - 1666; PMID: 8431446; http://dx.doi.org/10.1021/bi00057a033
  • Hwang BJ, Ford JM, Hanawalt PC, Chu G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 1999; 96:424 - 428; PMID: 9892649; http://dx.doi.org/10.1073/pnas.96.2.424
  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell 2006; 22:383 - 394; PMID: 16678110; http://dx.doi.org/10.1016/j.molcel.2006.03.035
  • Sugasawa K, Okuda Y, Saijo M, Nishi R, Matsuda N, Chu G, et al. UV-induced ubiquitylation of XPC protein mediated by UV-DDB-ubiquitin ligase complex. Cell 2005; 121:387 - 400; PMID: 15882621; http://dx.doi.org/10.1016/j.cell.2005.02.035
  • Nag A, Bondar T, Shiv S, Raychaudhuri P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol 2001; 21:6738 - 6747; PMID: 11564859; http://dx.doi.org/10.1128/MCB.21.20.6738-47.2001
  • Chandramohan V, Mineva ND, Burke B, Jeay S, Wu M, Shen J, et al. c-Myc represses FOXO3a-mediated transcription of the gene encoding the p27(Kip1) cyclin dependent kinase inhibitor. J Cell Biochem 2008; 104:2091 - 2106; PMID: 18393360; http://dx.doi.org/10.1002/jcb.21765
  • Chassot AA, Turchi L, Virolle T, Fitsialos G, Batoz M, Deckert M, et al. Id3 is a novel regulator of p27kip1 mRNA in early G1 phase and is required for cell cycle progression. Oncogene 2007; 26:5772 - 5783; PMID: 17404577; http://dx.doi.org/10.1038/sj.onc.1210386
  • Wang C, Hou X, Mohapatra S, Ma Y, Cress WD, Pledger WJ, et al. Activation of p27Kip1 Expression by E2F1. A negative feedback mechanism. J Biol Chem 2005; 280:12339 - 12343; PMID: 15713665; http://dx.doi.org/10.1074/jbc.C400536200
  • Wei D, Kanai M, Jia Z, Le X, Xie K. Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008; 68:4631 - 4639; PMID: 18559508; http://dx.doi.org/10.1158/0008-5472.CAN-07-5953
  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 1997; 11:1464 - 1478; PMID: 9192873; http://dx.doi.org/10.1101/gad.11.11.1464
  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A, et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 1999; 13:1181 - 1189; PMID: 10323868; http://dx.doi.org/10.1101/gad.13.9.1181
  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8:1153 - 1160; PMID: 12244302; http://dx.doi.org/10.1038/nm761
  • Jackson S, Xiong Y. CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34:562 - 570; PMID: 19818632; http://dx.doi.org/10.1016/j.tibs.2009.07.002
  • Hu J, McCall CM, Ohta T, Xiong Y. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nat Cell Biol 2004; 6:1003 - 1009; PMID: 15448697; http://dx.doi.org/10.1038/ncb1172
  • Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 1996; 272:877 - 880; PMID: 8629023; http://dx.doi.org/10.1126/science.272.5263.877
  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349 - 352; PMID: 9454332; http://dx.doi.org/10.1126/science.279.5349.349
  • Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 1998; 8:279 - 282; PMID: 9501072; http://dx.doi.org/10.1016/S0960-9822(98)70109-5
  • Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015 - 1029; PMID: 20528238; http://dx.doi.org/10.2217/fon.10.47
  • Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 2009; 28:3413 - 3427; PMID: 19779458; http://dx.doi.org/10.1038/emboj.2009.276
  • Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH. Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 2006; 23:471 - 482; PMID: 16916636; http://dx.doi.org/10.1016/j.molcel.2006.06.029
  • Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 1995; 82:555 - 564; PMID: 7664335; http://dx.doi.org/10.1016/0092-8674(95)90028-4
  • Lecanda J, Ganapathy V, D'Aquino-Ardalan C, Evans B, Cadacio C, Ayala A, et al. TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle 2009; 8:742 - 756; PMID: 19221482; http://dx.doi.org/10.4161/cc.8.5.7871
  • Hara T, Kamura T, Nakayama K, Oshikawa K, Hatakeyama S, Nakayama K. Degradation of p27(Kip1) at the G(0)-G(1) transition mediated by a Skp2-independent ubiquitination pathway. J Biol Chem 2001; 276:48937 - 48943; PMID: 11682478; http://dx.doi.org/10.1074/jbc.M107274200
  • Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, et al. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 2002; 21:3390 - 3401; PMID: 12093740; http://dx.doi.org/10.1093/emboj/cdf343
  • Ganoth D, Bornstein G, Ko TK, Larsen B, Tyers M, Pagano M, et al. The cell cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 2001; 3:321 - 324; PMID: 11231585; http://dx.doi.org/10.1038/35060126
  • Sitry D, Seeliger MA, Ko TK, Ganoth D, Breward SE, Itzhaki LS, et al. Three different binding sites of Cks1 are required for p27-ubiquitin ligation. J Biol Chem 2002; 277:42233 - 42240; PMID: 12140288; http://dx.doi.org/10.1074/jbc.M205254200
  • Abbas T, Sivaprasad U, Terai K, Amador V, Pagano M, Dutta A. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes Dev 2008; 22:2496 - 2506; PMID: 18794347; http://dx.doi.org/10.1101/gad.1676108
  • Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S, et al. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 2002; 10:1379 - 1390; PMID: 12504013; http://dx.doi.org/10.1016/S1097-2765(02)00755-4
  • Chen X, Zhang Y, Douglas L, Zhou P. UV-damaged DNA-binding proteins are targets of CUL-4A-mediated ubiquitination and degradation. J Biol Chem 2001; 276:48175 - 48182; PMID: 11673459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.