1,745
Views
50
CrossRef citations to date
0
Altmetric
Extra Views

Orchestrating the nucleases involved in DNA interstrand cross-link (ICL) repair

, &
Pages 3999-4008 | Received 07 Oct 2011, Accepted 11 Oct 2011, Published online: 01 Dec 2011

References

  • Dronkert ML, Kanaar R. Repair of DNA inter-strand cross-links. Mutat Res 2001; 486:217 - 247; PMID: 11516927
  • Lehoczký P, McHugh PJ, Chovanec M. DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol Rev 2007; 31:109 - 133; PMID: 17096663; http://dx.doi.org/10.1111/j.15746976.2006.00046.x
  • Bessho T, Mu D, Sancar A. Initiation of DNA inter-strand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5′ to the cross-linked base and removes a 22- to 28-nucleotide-long damage-free strand. Mol Cell Biol 1997; 17:6822 - 6830; PMID: 9372913
  • Muniandy PA, Thapa D, Thazhathveetil AK, Liu ST, Seidman MM. Repair of laser-localized DNA interstrand cross-links in G1 phase mammalian cells. J Biol Chem 2009; 284:27908 - 27917; PMID: 19684342; http://dx.doi.org/10.1074/jbc.M109.029025
  • Smeaton MB, Hlavin EM, McGregor Mason T, Noronha AM, Wilds CJ, Miller PS. Distortion-dependent unhooking of interstrand cross-links in mammalian cell extracts. Biochemistry 2008; 47:9920 - 9930; PMID: 18702509; http://dx.doi.org/10.1021/bi800925e
  • Ben-Yehoyada M, Wang LC, Kozekov ID, Rizzo CJ, Gottesman ME, Gautier J. Checkpoint signaling from a single DNA interstrand cross-link. Mol Cell 2009; 35:704 - 715; PMID: 19748363; http://dx.doi.org/10.1016/j.molcel.2009.08.014
  • McHugh PJ, Spanswick VJ, Hartley JA. Repair of DNA interstrand cross-links: molecular mechanisms and clinical relevance. Lancet Oncol 2001; 2:483 - 490; PMID: 11905724; http://dx.doi.org/10.1016/S14702045(01)00454-5
  • Niedernhofer LJ, Lalai AS, Hoeijmakers JH. Fanconi anemia (cross)linked to DNA repair. Cell 2005; 123:1191 - 1198; PMID: 16377561; http://dx.doi.org/10.1016/j.cell.2005.12.009
  • Patel KJ, Joenje H. Fanconi anemia and DNA replication repair. DNA Repair (Amst) 2007; 6:885 - 890; PMID: 17481966; http://dx.doi.org/10.1016/j.dnarep.2007.02.002
  • Thompson LH, Hinz JM. Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 2009; 668:54 - 72; PMID: 19622404; http://dx.doi.org/10.1016/j.mrfmmm.2009.02.003
  • Akkari YM, Bateman RL, Reifsteck CA, Olson SB, Grompe M. DNA replication is required to elicit cellular responses to psoralen-induced DNA inter-strand cross-links. Mol Cell Biol 2000; 20:8283 - 8289; PMID: 11027296; http://dx.doi.org/10.1128/MCB.20.21.82839.2000
  • De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA inter-strand cross-links in mammalian cells. Mol Cell Biol 2000; 20:7980 - 7990; PMID: 11027268; http://dx.doi.org/10.1128/MCB.20.21.7980-90.2000
  • McHugh PJ, Sones WR, Hartley JA. Repair of intermediate structures produced at DNA interstrand cross-links in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:3425 - 33; PMID: 10779332; http://dx.doi.org/10.1128/MCB.20.10.3425-33.2000
  • Andersson BS, Sadeghi T, Siciliano MJ, Legerski R, Murray D. Nucleotide excision repair genes as determinants of cellular sensitivity to cyclophosphamide analogs. Cancer Chemother Pharmacol 1996; 38:406 - 416; PMID: 8765433; http://dx.doi.org/10.1007/s002800050504
  • Damia G, Imperatori L, Stefanini M, D'Incalci M. Sensitivity of CHO mutant cell lines with specific defects in nucleotide excision repair to different anti-cancer agents. Int J Cancer 1996; 66:779 - 783; PMID: 8647649; http://dx.doi.org/10.1002/(SICI)1097-0215(19960611)66:6<779::AIDIJC12>3.0.CO;2-Z
  • Hoy CA, Thompson LH, Mooney CL, Salazar EP. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents. Cancer Res 1985; 45:1737 - 1743; PMID: 3919945
  • Niedernhofer LJ, Odijk H, Budzowska M, van Drunen E, Maas A, Theil AF, et al. The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Mol Cell Biol 2004; 24:5776 - 57787; PMID: 15199134; http://dx.doi.org/10.1128/MCB.24.13.577687.2004
  • Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, et al. The Fanconi anemia pathway promotes replication-dependent DNA inter-strand cross-link repair. Science 2009; 326:1698 - 1701; PMID: 19965384; http://dx.doi.org/10.1126/science.1182372
  • Räschle M, Knipsheer P, Enoiu M, Angelov T, Sun J, Griffith JD, et al. Mechanism of replication-coupled DNA interstrand cross-link repair. Cell 2008; 134:969 - 980; PMID: 18805090; http://dx.doi.org/10.1016/j.cell.2008.08.030
  • Fisher LA, Bessho M, Bessho T. Processing of a psoralen DNA interstrand cross-link by XPF-ERCC1 complex in vitro. J Biol Chem 2008; 283:1275 - 1281; PMID: 18006494; http://dx.doi.org/10.1074/jbc.M708072200
  • Kuraoka I, Kobertz WR, Ariza RR, Biggerstaff M, Essigmann JM, Wood RD. Repair of an inter-strand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 2000; 275:26632 - 26636; PMID: 10882712; http://dx.doi.org/10.1074/jbc.C000337200
  • Hanada K, Budzowska M, Davies SL, van Drunen E, Onizawa H, Beverloo HB, et al. The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nat Struct Mol Biol 2007; 14:1096 - 1104; PMID: 17934473; http://dx.doi.org/10.1038/nsmb1313
  • Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J, et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of inter-strand DNA cross-links into double-strands breaks. EMBO J 2006; 25:4921 - 4932; PMID: 17036055; http://dx.doi.org/10.1038/sj.emboj.7601344
  • Andersen SL, Bergstralh DT, Kohl KP, LaRocque JR, Moore CB, Sekelsky J. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Mol Cell 2009; 35:128 - 135; PMID: 19595722; http://dx.doi.org/10.1016/j.molcel.2009.06.019
  • Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH, McIntyre RE, et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat Genet 2011; 43:147 - 152; PMID: 21240276; http://dx.doi.org/10.1038/ng.752
  • Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, et al. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 2009; 138:78 - 89; PMID: 19596236; http://dx.doi.org/10.1016/j.cell.2009.06.029
  • Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A. Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 2011; 43:142 - 146; PMID: 21240275; http://dx.doi.org/10.1038/ng.750
  • Muñoz IM, Hain K, Declais AC, Gardiner M, Toh GW, Sanchez-Pulido L, et al. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell 2009; 35:116 - 127; PMID: 19595721; http://dx.doi.org/10.1016/j.molcel.2009.06.020
  • Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA, Steltenpool J, et al. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 2011; 43:138 - 141; PMID: 21240277; http://dx.doi.org/10.1038/ng.751
  • Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ, et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 2009; 138:63 - 77; PMID: 19596235; http://dx.doi.org/10.1016/j.cell.2009.06.030
  • Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, et al. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand cross-linking agents. Cell 2010; 142:77 - 88; PMID: 20603016; http://dx.doi.org/10.1016/j.cell.2010.06.022
  • MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, et al. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 2010; 142:65 - 76; PMID: 20603015; http://dx.doi.org/10.1016/j.cell.2010.06.021
  • Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, et al. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand cross-link repair. Mol Cell 2010; 39:36 - 47; PMID: 20603073; http://dx.doi.org/10.1016/j.molcel.2010.06.023
  • Ciccia A, McDonald N, West SC. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu Rev Biochem 2008; 77:259 - 287; PMID: 18518821; http://dx.doi.org/10.1146/annurev.biochem.77.070306.102408
  • Svendsen JM, Harper JW. GEN1/Yen1 and the SLX4 complex: Solutions to the problem of Holliday junction resolution. Genes Dev 2010; 24:521 - 536; PMID: 20203129; http://dx.doi.org/10.1101/gad.1903510
  • de Laat WL, Appeldoorn E, Jaspers NG, Hoeijmakers JH. DNA structural elements required for ERCC1XPF endonuclease activity. J Biol Chem 1998; 273:7835 - 7842; PMID: 9525876; http://dx.doi.org/10.1074/jbc.273.14.7835
  • Park CH, Bessho T, Matsunaga T, Sancar A. Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 1995; 270:22657 - 22660; PMID: 7559382; http://dx.doi.org/10.1074/jbc.270.39.22657
  • Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, et al. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86:811 - 822; PMID: 8797827; http://dx.doi.org/10.1016/S00928674(00)80155-5
  • Aravind L, Walker DR, Koonin EV. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 1999; 27:1223 - 1242; PMID: 9973609; http://dx.doi.org/10.1093/nar/27.5.1223
  • Enzlin JH, Scharer OD. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J 2002; 21:2045 - 2053; PMID: 11953324; http://dx.doi.org/10.1093/emboj/21.8.2045
  • Tripsianes K, Folkers G, Ab E, Das D, Odijk H, Jaspers NG, et al. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 2005; 13:1849 - 1858; PMID: 16338413; http://dx.doi.org/10.1016/j.str.2005.08.014
  • Tsodikov OV, Enzlin JH, Scharer OD, Ellenberger T. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 2005; 102:11236 - 11241; PMID: 16076955; http://dx.doi.org/10.1073/pnas.0504341102
  • Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ. The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1–Rad10. Mol Cell Biol 2003; 23:3487 - 3496; PMID: 12724407; http://dx.doi.org/10.1128/MCB.23.10.3487-96.2003
  • Ciccia A, Constantinou A, West SC. Identification and characterization of the human mus81-eme1 endonuclease. J Biol Chem 2003; 278:25172 - 25178; PMID: 12721304; http://dx.doi.org/10.1074/jbc.M302882200
  • Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 2007; 25:331 - 343; PMID: 17289582; http://dx.doi.org/10.1016/j.molcel.2007.01.003
  • Fricke WM, Brill SJ. Slx1–Slx4 is a second structure-specific endonuclease functionally redundant with Sgs1-Top3. Genes Dev 2003; 17:1768 - 1778; PMID: 12832395; http://dx.doi.org/10.1101/gad.1105203
  • Coulon S, Gaillard PH, Chahwan C, McDonald WH, Yates JR 3rd, Russell P. Slx1–Slx4 are subunits of a structure-specific endonuclease that maintains ribosomal DNA in fission yeast. Mol Biol Cell 2004; 15:71 - 80; PMID: 14528010; http://dx.doi.org/10.1091/mbc.E0308-0586
  • Wang AT, Sengerova B, Cattell E, Inagawa T, Hartley JM, Kiakos K, et al. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes Dev 2011; 25:1859 - 1870; PMID: 21896658; http://dx.doi.org/10.1101/gad.15699211
  • Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C, Ciccia A, et al. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J 2003; 22:6137 - 6147; PMID: 14609959; http://dx.doi.org/10.1093/emboj/cdg580
  • Dendouga N, Gao H, Moechars D, Janicot M, Vialard J, McGowan CH. Disruption of murine Mus81 increases genomic instability and DNA damage sensitivity but does not promote tumorigenesis. Mol Cell Biol 2005; 25:7569 - 7579; PMID: 16107704; http://dx.doi.org/10.1128/MCB.25.17.7569-79.2005
  • Kumaresan KR, Hang B, Lambert MW. Human endonucleolytic incision of DNA 3′ and 5′ to a site-directed psoralen monoadduct and interstrand cross-link. J Biol Chem 1995; 270:30709 - 30716; PMID: 8530510; http://dx.doi.org/10.1074/jbc.270.51.30709
  • Kumaresan KR, Hwang M, Thelen MP, Lambert MW. Contribution of XPF functional domains to the 5′ and 3′ incisions produced at the site of a psoralen interstrand cross-link. Biochemistry 2002; 41:890 - 896; PMID: 11790111; http://dx.doi.org/10.1021/bi011614z
  • Kumaresan KR, Lambert MW. Fanconi anemia, complementation group A, cells are defective in ability to produce incisions at sites of psoralen inter-strand cross-links. Carcinogenesis 2000; 21:741 - 751; PMID: 10753211; http://dx.doi.org/10.1093/carcin/21.4.741
  • Cannavo E, Gerrits B, Marra G, Schlapbach R, Jiricny J. Characterization of the interactome of the human MutL homologues MLH1, PMS1 and PMS2. J Biol Chem 2007; 282:2976 - 2986; PMID: 17148452; http://dx.doi.org/10.1074/jbc.M609989200
  • Liu T, Ghosal G, Yuan J, Chen J, Huang J. FAN1 acts with FANCI-FANCD2 to promote DNA inter-strand cross-link repair. Science 2010; 329:693 - 696; PMID: 20671156; http://dx.doi.org/10.1126/science.1192656
  • Ho TV, Scharer OD. Translesion DNA synthesis polymerases in DNA interstrand cross-link repair. Environ Mol Mutagen 2010; 51:552 - 566; PMID: 20658647
  • Ho TV, Guainazzi A, Derkunt SB, Enoiu M, Scharer OD. Structure-dependent bypass of DNA interstrand cross-links by translesion synthesis polymerases. Nucleic Acids Res 2011; 39:7455 - 7464; PMID: 21666254; http://dx.doi.org/10.1093/nar/gkr448
  • Minko IG, Harbut MB, Kozekov ID, Kozekova A, Jakobs PM, Olson SB, et al. Role for DNA polymerase kappa in the processing of N2-N2guanine interstrand cross-links. J Biol Chem 2008; 283:17075 - 17082; PMID: 18434313; http://dx.doi.org/10.1074/jbc.M801238200
  • Henriques JA, Moustacchi E. Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 1980; 95:273 - 288; PMID: 7009316
  • Henriques JA, Moustacchi E. Interactions between mutations for sensitivity to psoralen photoaddition (pso) and to radiation (rad) in Saccharomyces cerevisiae. J Bacteriol 1981; 148:248 - 256; PMID: 7026532
  • Rahman KM, Thompson AS, James CH, Narayanaswamy M, Thurston DE. The Pyrrolobenzodiazepine dimer SJG-136 forms sequence-dependent intrastrand DNA cross-links and monoalkylated adducts in addition to interstrand cross-links. J Am Chem Soc 2009; 131:13756 - 13766; PMID: 19725510; http://dx.doi.org/10.1021/ja902986x
  • Cattell E, Sengerova B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. Environ Mol Mutagen 2010; 51:635 - 645; PMID: 20175117
  • Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015 - 1029; PMID: 20528238; http://dx.doi.org/10.2217/fon.10.47
  • Hazrati A, Ramis-Castelltort M, Sarkar S, Barber LJ, Schofield CJ, Hartley JA, et al. Human SNM1A suppresses the DNA repair defects of yeast pso2 mutants. DNA Repair (Amst) 2008; 7:230 - 238; PMID: 18006388; http://dx.doi.org/10.1016/j.dnarep.2007.09.013
  • Li X, Hejna J, Moses RE. The yeast Snm1 protein is a DNA 5′-exonuclease. DNA Repair (Amst) 2005; 4:163 - 170; PMID: 15590324; http://dx.doi.org/10.1016/j.dnarep.2004.08.012
  • Hejna J, Philip S, Ott J, Faulkner C, Moses R. The hSNM1 protein is a DNA 5′-exonuclease. Nucleic Acids Res 2007; 35:6115 - 6123; PMID: 17804464; http://dx.doi.org/10.1093/nar/gkm530
  • Ahkter S, Richie CT, Zhang N, Behringer RR, Zhu C, Legerski RJ. Snm1-deficient mice exhibit accelerated tumorigenesis and susceptibility to infection. Mol Cell Biol 2005; 25:10071 - 10078; PMID: 16260620; http://dx.doi.org/10.1128/MCB.25.22.10071-8.2005
  • Dronkert ML, de Wit J, Boeve M, Vasconcelos ML, van Steeg H, Tan TL, et al. Disruption of mouse SNM1 causes increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. Mol Cell Biol 2000; 20:4553 - 4561; PMID: 10848582; http://dx.doi.org/10.1128/MCB.20.13.4553-61.2000
  • Hemphill AW, Bruun D, Thrun L, Akkari Y, Torimaru Y, Hejna K, et al. Mammalian SNM1 is required for genome stability. Mol Genet Metab 2008; 94:38 - 45; PMID: 18180189; http://dx.doi.org/10.1016/j.ymgme.2007.11.012
  • Ishiai M, Kimura M, Namikoshi K, Yamazoe M, Yamamoto K, Arakawa H, et al. DNA cross-link repair protein SNM1A interacts with PIAS1 in nuclear focus formation. Mol Cell Biol 2004; 24:10733 - 10741; PMID: 15572677; http://dx.doi.org/10.1128/MCB.24.24.1073341.2004
  • Lenain C, Bauwens S, Amiard S, Brunori M, Giraud-Panis MJ, Gilson E. The Apollo 5′ exonuclease functions together with TRF2 to protect telomeres from DNA repair. Curr Biol 2006; 16:1303 - 1310; PMID: 16730175; http://dx.doi.org/10.1016/j.cub.2006.05.021
  • Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Leger A, Poulet A, et al. TRF2 and apollo cooperate with topoisomerase 2alpha to protect human telomeres from replicative damage. Cell 2010; 142:230 - 242; PMID: 20655466; http://dx.doi.org/10.1016/j.cell.2010.05.032
  • Bae JB, Mukhopadhyay SS, Liu L, Zhang N, Tan J, Akhter S, et al. Snm1B/Apollo mediates replication fork collapse and S Phase checkpoint activation in response to DNA interstrand cross-links. Oncogene 2008; 27:5045 - 5056; PMID: 18469862; http://dx.doi.org/10.1038/onc.2008.139
  • Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand cross-link-inducing agents and ionizing radiation. Oncogene 2004; 23:8611 - 8618; PMID: 15467758; http://dx.doi.org/10.1038/sj.onc.1207895
  • Liu L, Akhter S, Bae JB, Mukhopadhyay SS, Richie CT, Liu X, et al. SNM1B/Apollo interacts with astrin and is required for the prophase cell cycle checkpoint. Cell Cycle 2009; 8:628 - 638; PMID: 19197158; http://dx.doi.org/10.4161/cc.8.4.7791
  • Wang AT, McHugh PJ. Apollo: a healer of the genome?. Cell Cycle 2009; 8:1980 - 1981; PMID: 19550156; http://dx.doi.org/10.4161/cc.8.13.8977
  • Anders M, Mattow J, Digweed M, Demuth I. Evidence for hSNM1B/Apollo functioning in the HSP70 mediated DNA damage response. Cell Cycle 2009; 8:1725 - 1732; PMID: 19411856; http://dx.doi.org/10.4161/cc.8.11.8605
  • Demuth I, Bradshaw PS, Lindner A, Anders M, Heinrich S, Kallenbach J, et al. Endogenous hSNM1B/Apollo interacts with TRF2 and stimulates ATM in response to ionizing radiation. DNA Repair (Amst) 2008; 7:1192 - 1201; PMID: 18468965; http://dx.doi.org/10.1016/j.dnarep.2008.03.020
  • Pannicke U, Ma Y, Hopfner KP, Niewolik D, Lieber MR, Schwarz K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J 2004; 23:1987 - 1997; PMID: 15071507; http://dx.doi.org/10.1038/sj.emboj.7600206
  • Goodarzi AA, Yu Y, Riballo E, Douglas P, Walker SA, Ye R, et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity. EMBO J 2006; 25:3880 - 3889; PMID: 16874298; http://dx.doi.org/10.1038/sj.emboj.7601255
  • Pawelczak KS, Turchi JJ. Purification and characterization of exonuclease-free Artemis: Implications for DNA-PK-dependent processing of DNA termini in NHEJ-catalyzed DSB repair. DNA Repair (Amst) 2010; 9:670 - 677; PMID: 20347402; http://dx.doi.org/10.1016/j.dnarep.2010.03.002
  • Hosono Y, Abe T, Ishiai M, Takata M, Enomoto T, Seki M. The role of SNM1 family nucleases in etoposide-induced apoptosis. Biochem Biophys Res Commun 2011; 410:568 - 573; PMID: 21683065; http://dx.doi.org/10.1016/j.bbrc.2011.06.027
  • Gregson SJ, Howard PW, Hartley JA, Brooks NA, Adams LJ, Jenkins TC, et al. Design, synthesis and evaluation of a novel pyrrolobenzodiazepine DNA-interactive agent with highly efficient cross-linking ability and potent cytotoxicity. J Med Chem 2001; 44:737 - 748; PMID: 11262084; http://dx.doi.org/10.1021/jm001064n
  • Angelov T, Guainazzi A, Scharer OD. Generation of DNA interstrand cross-links by post-synthetic reductive amination. Org Lett 2009; 11:661 - 664; PMID: 19132933; http://dx.doi.org/10.1021/ol802719a
  • Guainazzi A, Campbell AJ, Angelov T, Simmerling C, Scharer OD. Synthesis and molecular modeling of a nitrogen mustard DNA interstrand cross-link. Chemistry 2010; 16:12100 - 12103; PMID: 20842675; http://dx.doi.org/10.1002/chem.201002041
  • Wilds CJ, Noronha AM, Robidoux S, Miller PS. Synthesis and characterization of DNA duplexes containing an N3T-ethyl-N3T interstrand cross-link in opposite orientations. Nucleosides Nucleotides Nucleic Acids 2005; 24:965 - 969; PMID: 16248073; http://dx.doi.org/10.1081/NCN-200059329
  • Bhagwat N, Olsen AL, Wang AT, Hanada K, Stuckert P, Kanaar R, et al. XPF-ERCC1 participates in the Fanconi anemia pathway of cross-link repair. Mol Cell Biol 2009; 29:6427 - 6437; PMID: 19805513; http://dx.doi.org/10.1128/MCB.00086-09
  • Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 2001; 7:249 - 262; PMID: 11239454; http://dx.doi.org/10.1016/S1097-2765(01)00173-3
  • Joo W, Xu G, Persky NS, Smogorzewska A, Rudge DG, Buzovetsky O, et al. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 2011; 333:312 - 316; PMID: 21764741; http://dx.doi.org/10.1126/science.1205805
  • Yang K, Moldovan GL, D'Andrea AD. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J Biol Chem 2010; 285:19085 - 19091; PMID: 20385554; http://dx.doi.org/10.1074/jbc.M109.100032
  • Geng L, Huntoon CJ, Karnitz LM. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J Cell Biol 2010; 191:249 - 257; PMID: 20937699; http://dx.doi.org/10.1083/jcb.201005101
  • Park HK, Wang H, Zhang J, Datta S, Fei P. Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS ONE 2010; 5:13313; PMID: 20967207; http://dx.doi.org/10.1371/journal.pone.0013313
  • Song IY, Palle K, Gurkar A, Tateishi S, Kupfer GM, Vaziri C. Rad18-mediated translesion synthesis of bulky DNA adducts is coupled to activation of the Fanconi anemia DNA repair pathway. J Biol Chem 2010; 285:31525 - 31536; PMID: 20675655; http://dx.doi.org/10.1074/jbc.M110.138206
  • Williams SA, Longerich S, Sung P, Vaziri C, Kupfer GM. The E3 ubiquitin ligase RAD18 regulates ubiquitylation and chromatin loading of FANCD2 and FANCI. Blood 2011; 117:5078 - 5087; PMID: 21355096; http://dx.doi.org/10.1182/blood-2010-10-311761
  • Shen X, Do H, Li Y, Chung WH, Tomasz M, de Winter JP, et al. Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol Cell 2009; 35:716 - 723; PMID: 19748364; http://dx.doi.org/10.1016/j.molcel.2009.06.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.