1,297
Views
24
CrossRef citations to date
0
Altmetric
Extra Views

Keeping chromatin quiet

How nucleosome remodeling restores heterochromatin after replication

, &
Pages 4017-4025 | Received 07 Oct 2011, Accepted 27 Oct 2011, Published online: 01 Dec 2011

References

  • Probst AV, Dunleavy E, Almouzni G. Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 2009; 10:192 - 206; PMID: 19234478; http://dx.doi.org/10.1038/nrm2640
  • Falbo KB, Shen X. Chromatin remodeling in DNA replication. J Cell Biochem 2006; 97:684 - 689; PMID: 16365876; http://dx.doi.org/10.1002/jcb.20752
  • Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78:273 - 304; PMID: 19355820; http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223
  • Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 2002; 32:627 - 632; PMID: 12434153; http://dx.doi.org/10.1038/ng1046
  • Papamichos-Chronakis M, Peterson CL. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol 2008; 15:338 - 345; PMID: 18376411; http://dx.doi.org/10.1038/nsmb.1413
  • Cohen SM, Chastain PD 2nd, Rosson GB, Groh BS, Weissman BE, Kaufman DG, et al. BRG1 colocalizes with DNA replication factors and is required for efficient replication fork progression. Nucleic Acids Res 2010; 38:6906 - 6919; PMID: 20571081; http://dx.doi.org/10.1093/nar/gkq559
  • Sugimoto N, Yugawa T, Iizuka M, Kiyono T, Fujita M. The chromatin remodeler sucrose nonfermenting 2 homolog (SNF2H) is recruited onto DNA replication origins through interaction with CDC10-dependent transcript 1 (CDT1) and promotes the pre-replication complex formation. J Biol Chem 2011; 286:39200 - 39210
  • Corpet A, Almouzni G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 2009; 19:29 - 41; PMID: 19027300; http://dx.doi.org/10.1016/j.tcb.2008.10.002
  • Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 2011; 42:285 - 296; PMID: 21549307; http://dx.doi.org/10.1016/j.molcel.2011.02.036
  • Jasencakova Z, Groth A. Broken silence restored—remodeling primes for deacetylation at replication Forks. Mol Cell 2011; 42:267 - 269; PMID: 21549303; http://dx.doi.org/10.1016/j.molcel.2011.04.007
  • Vincent JA, Kwong TJ, Tsukiyama T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 2008; 15:477 - 484; PMID: 18408730; http://dx.doi.org/10.1038/nsmb.1419
  • Shimada K, Oma Y, Schleker T, Kugou K, Ohta K, Harata M, et al. Ino80 Chromatin Remodeling Complex Promotes Recovery of Stalled Replication Forks. Current biology: CB 2008; 18:566 - 575
  • Hur SK, Park EJ, Han JE, Kim YA, Kim JD, Kang D, et al. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell Mol Life Sci 2010; 67:2283 - 2296; PMID: 20237820; http://dx.doi.org/10.1007/s00018-010-0337-3
  • de la Serna IL, Imbalzano AN. Unfolding heterochromatin for replication. Nat Genet 2002; 32:560 - 562; PMID: 12457187; http://dx.doi.org/10.1038/ng1202-560
  • Yan Q, Cho E, Lockett S, Muegge K. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol Cell Biol 2003; 23:8416 - 8428; PMID: 14612388; http://dx.doi.org/10.1128/MCB.23.23.8416-28.2003
  • Helbling Chadwick L, Chadwick B, Jaye D, Wade P. The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 2009; 118:445 - 457; PMID: 19296121; http://dx.doi.org/10.1007/s00412-009-0207-7
  • Poot RA, Bozhenok L, van den Berg DLC, Steffensen S, Ferreira F, Grimaldi M, et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 2004; 6:1236 - 1244; PMID: 15543136; http://dx.doi.org/10.1038/ncb1196
  • Poot RA, Bozhenok L, van den Berg DL, Hawkes N, Varga-Weisz PD. Chromatin remodeling by WSTF-ISWI at the replication site: opening a window of opportunity for epigenetic inheritance?. Cell Cycle 2005; 4:543 - 546; PMID: 15753658; http://dx.doi.org/10.4161/cc.4.4.1624
  • Sims JK, Wade PA. Mi-2/NuRD complex function is required for normal S phase progression and assembly of pericentric heterochromatin. Mol Biol Cell 2011; 22:3094 - 3102; PMID: 21737684; http://dx.doi.org/10.1091/mbc.E11-03-0258
  • Craig JM. Heterochromatin—many flavours, common themes. Bioessays 2005; 27:17 - 28; PMID: 15612037; http://dx.doi.org/10.1002/bies.20145
  • Grewal SI, Jia S. Heterochromatin revisited. Nat Rev Genet 2007; 8:35 - 46; PMID: 17173056; http://dx.doi.org/10.1038/nrg2008
  • Taddei A, Maison C, Roche D, Almouzni G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol 2001; 3:114 - 120; PMID: 11175742; http://dx.doi.org/10.1038/35055010
  • Peters AHFM, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, et al. Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107:323 - 337; PMID: 11701123; http://dx.doi.org/10.1016/S0092-8674(01)00542-6
  • Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997; 11:345 - 357; PMID: 9030687; http://dx.doi.org/10.1101/gad.11.3.345
  • Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni GA. CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 2004; 23:3516 - 3526; PMID: 15306854; http://dx.doi.org/10.1038/sj.emboj.7600362
  • Dohke K, Miyazaki S, Tanaka K, Urano T, Grewal SI, Murakami Y. Fission yeast chromatin assembly factor 1 assists in the replication-coupled maintenance of heterochromatin. Genes Cells 2008; 13:1027 - 1043; PMID: 18761674; http://dx.doi.org/10.1111/j.1365-2443.2008.01225.x
  • Quivy JP, Gerard A, Cook AJL, Roche D, Almouzni G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 2008; 15:972 - 979; PMID: 19172751; http://dx.doi.org/10.1038/nsmb.1470
  • Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, et al. The HP1[alpha]-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 2009; 10:769 - 775; PMID: 19498464; http://dx.doi.org/10.1038/embor.2009.90
  • Yamane K, Mizuguchi T, Cui B, Zofall M, Noma K, Grewal SI. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci. Mol Cell 2011; 41:56 - 66; PMID: 21211723; http://dx.doi.org/10.1016/j.molcel.2010.12.009
  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005; 37:391 - 400; PMID: 15765097; http://dx.doi.org/10.1038/ng1531
  • Yu Q, Zhang X, Bi X. Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure. J Biol Chem 2011; 286:14659 - 14669; PMID: 21388962; http://dx.doi.org/10.1074/jbc.M110.183269
  • Neves-Costa A, Will WR, Vetter AT, Miller JR, Varga-Weisz P. The SNF2-Family Member Fun30 Promotes Gene Silencing in Heterochromatic Loci. PLoS ONE 2009; 4:8111; PMID: 19956593; http://dx.doi.org/10.1371/journal.pone.0008111
  • Strålfors A, Walfridsson J, Bhuiyan H, Ekwall K. The FUN30 Chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet 2011; 7:1001334; PMID: 21437270; http://dx.doi.org/10.1371/journal.pgen.1001334
  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 1997; 91:1021 - 1032; PMID: 9428524; http://dx.doi.org/10.1016/S0092-8674(00)80492-4
  • Grewal SI, Bonaduce MJ, Klar AJ. Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 1998; 150:563 - 576; PMID: 9755190
  • Maison C, Bailly D, Peters AHFM, Quivy JP, Roche D, Taddei A, et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 2002; 30:329 - 334; PMID: 11850619; http://dx.doi.org/10.1038/ng843
  • Okazaki N, Ikeda S, Ohara R, Shimada K, Yanagawa T, Nagase T, et al. The novel protein complex with SMARCAD1/KIAA1122 binds to the vicinity of TSS. J Mol Biol 2008; 382:257 - 265; PMID: 18675275; http://dx.doi.org/10.1016/j.jmb.2008.07.031
  • Jasencakova Z, Groth A. Restoring chromatin after replication: how new and old histone marks come together. Semin Cell Dev Biol 2010; 21:231 - 237; PMID: 19815085; http://dx.doi.org/10.1016/j.semcdb.2009.09.018
  • Annunziato AT. Assembling chromatin: The long and winding road. Biochim Biophys Acta 2011; In press
  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 1995; 92:1237 - 1241; PMID: 7862667; http://dx.doi.org/10.1073/pnas.92.4.1237
  • Benson LJ, Gu Y, Yakovleva T, Tong K, Barrows C, Strack CL, et al. Modifications of H3 and H4 during chromatin replication, nucleosome assembly and histone exchange. J Biol Chem 2006; 281:9287 - 9296; PMID: 16464854; http://dx.doi.org/10.1074/jbc.M512956200
  • Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 2006; 24:309 - 316; PMID: 17052464; http://dx.doi.org/10.1016/j.molcel.2006.08.019
  • Scharf AND, Barth TK, Imhof A. Establishment of Histone Modifications after Chromatin Assembly. Nucleic Acids Res 2009; 37:5032 - 5040; PMID: 19541851; http://dx.doi.org/10.1093/nar/gkp518
  • Campos EI, Fillingham J, Li G, Zheng H, Voigt P, Kuo WH, et al. The program for processing newly synthesized histones H3.1 and H4. Nat Struct Mol Biol 2010; 17:1343 - 1351; PMID: 20953179; http://dx.doi.org/10.1038/nsmb.1911
  • Jasencakova Z, Scharf AN, Ask K, Corpet A, Imhof A, Almouzni G, et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 2010; 37:736 - 743; PMID: 20227376; http://dx.doi.org/10.1016/j.molcel.2010.01.033
  • Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G. Duplication and maintenance of heterochromatin domains. J Cell Biol 1999; 147:1153 - 1166; PMID: 10601331; http://dx.doi.org/10.1083/jcb.147.6.1153
  • Scharf AN, Imhof A. Every methyl counts—epigenetic calculus. FEBS Lett 2011; 585:2001 - 2007; PMID: 21108946; http://dx.doi.org/10.1016/j.febslet.2010.11.029
  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410:116 - 120; PMID: 11242053; http://dx.doi.org/10.1038/35065132
  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410:120 - 124; PMID: 11242054; http://dx.doi.org/10.1038/35065138
  • Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J 1999; 18:6385 - 6395; PMID: 10562550; http://dx.doi.org/10.1093/emboj/18.22.6385
  • Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999; 19:4366 - 4378; PMID: 10330177
  • Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 1999; 18:1923 - 1938; PMID: 10202156; http://dx.doi.org/10.1093/emboj/18.7.1923
  • Canzio D, Chang EY, Shankar S, Kuchenbecker KM, Simon MD, Madhani HD, et al. Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol Cell 2011; 41:67 - 81; PMID: 21211724; http://dx.doi.org/10.1016/j.molcel.2010.12.016
  • Shinkai Y, Tachibana M. H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 2011; 25:781 - 788; PMID: 21498567; http://dx.doi.org/10.1101/gad.2027411
  • Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 2011; 286:26267 - 26276; PMID: 21652716; http://dx.doi.org/10.1074/jbc.R111.252569
  • Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nat Cell Biol 2006; 8:870 - 876; PMID: 16862143; http://dx.doi.org/10.1038/ncb1446
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008; 31:167 - 177; PMID: 18657500; http://dx.doi.org/10.1016/j.molcel.2008.05.017
  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316:1160 - 1166; PMID: 17525332; http://dx.doi.org/10.1126/science.1140321
  • Moldovan GL, Pfander B, Jentsch S. PCNA, the maestro of the replication fork. Cell 2007; 129:665 - 679; PMID: 17512402; http://dx.doi.org/10.1016/j.cell.2007.05.003
  • Kohn KW, Aladjem MI, Weinstein JN, Pommier Y. Chromatin challenges during DNA replication: a systems representation. Mol Biol Cell 2008; 19:1 - 7; PMID: 17959828; http://dx.doi.org/10.1091/mbc.E07-06-0528
  • Warbrick E, Lane DP, Glover DM, Cox LS. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr Biol 1995; 5:275 - 282; PMID: 7780738; http://dx.doi.org/10.1016/S0960-9822(95)00058-3
  • Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM. XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 2004; 32:2193 - 2201; PMID: 15107487; http://dx.doi.org/10.1093/nar/gkh556
  • Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB, Takeda S, et al. REV1 Protein interacts with PCNA: Significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 2006; 23:265 - 271; PMID: 16857592; http://dx.doi.org/10.1016/j.molcel.2006.05.038
  • Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, et al. A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. EMBO J 1996; 15:4423 - 4433; PMID: 8861969
  • Uhlmann F, Cai J, Gibbs E, O'Donnell M, Hurwitz J. Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J Biol Chem 1997; 272:10058 - 10064; PMID: 9092549; http://dx.doi.org/10.1074/jbc.272.15.10058
  • Rolef Ben-Shahar T, Castillo AG, Osborne MJ, Borden KLB, Kornblatt J, Verreault A. Two fundamentally distinct PCNA interaction peptides contribute to chromatin assembly factor 1 function. Mol Cell Biol 2009; 29:6353 - 6365; PMID: 19822659; http://dx.doi.org/10.1128/MCB.01051-09
  • Spada F, Haemmer A, Kuch D, Rothbauer U, Schermelleh L, Kremmer E, et al. DNMT1 but not its interaction with the replication machinery is required for maintenance of DNA methylation in human cells. J Cell Biol 2007; 176:565 - 571; PMID: 17312023; http://dx.doi.org/10.1083/jcb.200610062
  • Sharif J, Muto M, Takebayashi S-i, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007; 450:908 - 912; PMID: 17994007; http://dx.doi.org/10.1038/nature06397
  • Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 2000; 25:269 - 277; PMID: 10888872; http://dx.doi.org/10.1038/77023
  • Kleczkowska HE, Marra G, Lettieri T, Jiricny J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 2001; 15:724 - 736; PMID: 11274057; http://dx.doi.org/10.1101/gad.191201
  • Milutinovic S, Zhuang Q, Szyf M. Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 2002; 277:20974 - 20978; PMID: 11929879; http://dx.doi.org/10.1074/jbc.M202504200
  • Estève PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 2006; 20:3089 - 3103; PMID: 17085482; http://dx.doi.org/10.1101/gad.1463706
  • Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R. Cell differentiation induces TIF1beta association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 2002; 115:3439 - 3448; PMID: 12154074
  • Erdel F, Krug J, Langst G, Rippe K. Targeting chromatin remodelers: Signals and search mechanisms. Biochim Biophys Acta 2011; 1809:497 - 508
  • Vassilev AP, Rasmussen HH, Christensen EI, Nielsen S, Celis JE. The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase. J Cell Sci 1995; 108:1205 - 1215; PMID: 7622605
  • Kannouche PL, Wing J, Lehmann AR. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 2004; 14:491 - 500; PMID: 15149598; http://dx.doi.org/10.1016/S1097-2765(04)00259-X
  • Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 1998; 2:851 - 861; PMID: 9885572; http://dx.doi.org/10.1016/S1097-2765(00)80299-3
  • Kehle J, Beuchle D, Treuheit S, Christen B, Kennison JA, Bienz M, et al. dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 1998; 282:1897 - 1900; PMID: 9836641; http://dx.doi.org/10.1126/science.282.5395.1897
  • Sugiyama T, Cam HP, Sugiyama R, Noma K, Zofall M, Kobayashi R, et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 2007; 128:491 - 504; PMID: 17289569; http://dx.doi.org/10.1016/j.cell.2006.12.035
  • Zhou Y, Santoro R, Grummt I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 2002; 21:4632 - 4640; PMID: 12198165; http://dx.doi.org/10.1093/emboj/cdf460
  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, et al. The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 2010; 29:2135 - 2146; PMID: 20168299; http://dx.doi.org/10.1038/emboj.2010.17
  • Tai HH, Geisterfer M, Bell JC, Moniwa M, Davie JR, Boucher L, et al. CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochem Biophys Res Commun 2003; 308:170 - 176; PMID: 12890497; http://dx.doi.org/10.1016/S0006-291X(03)01354-8
  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci USA 1998; 95:3519 - 3524; PMID: 9520398; http://dx.doi.org/10.1073/pnas.95.7.3519
  • Ogawa H, Ishiguro K-i, Gaubatz S, Livingston DM, Nakatani Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science 2002; 296:1132 - 1136; PMID: 12004135; http://dx.doi.org/10.1126/science.1069861
  • Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 2003; 12:475 - 487; PMID: 14536086; http://dx.doi.org/10.1016/j.molcel.2003.08.007
  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 2004; 18:1251 - 1262; PMID: 15145825; http://dx.doi.org/10.1101/gad.300704
  • Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 1998; 395:917 - 921; PMID: 9804427; http://dx.doi.org/10.1038/27699
  • Nousbeck J, Burger B, Fuchs-Telem D, Pavlovsky M, Fenig S, Sarig O, et al. A mutation in a skin-specific isoform of SMARCAD1 causes autosomal-dominant adermatoglyphia. Am J Hum Genet 2011; 89:302 - 307; PMID: 21820097; http://dx.doi.org/10.1016/j.ajhg.2011.07.004
  • Schoor M, Schuster-Gossler K, Roopenian D, Gossler A. Skeletal dysplasias, growth retardation, reduced postnatal survival and impaired fertility in mice lacking the SNF2/SWI2 family member ETL1. Mech Dev 1999; 85:73 - 83; PMID: 10415348; http://dx.doi.org/10.1016/S0925-4773(99)00090-8
  • Xu Y, Price BD. Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 2011; 10:261 - 267; PMID: 21212734; http://dx.doi.org/10.4161/cc.10.2.14543
  • Awad S, Ryan D, Prochasson P, Owen-Hughes T, Hassan AH. The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme. J Biol Chem 2010; 285:9477 - 9484; PMID: 20075079; http://dx.doi.org/10.1074/jbc.M109.082149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.