786
Views
24
CrossRef citations to date
0
Altmetric
Report

Pygo2 regulates histone gene expression and H3 K56 acetylation in human mammary epithelial cells

Pages 79-87 | Received 10 Jun 2011, Accepted 13 Oct 2011, Published online: 01 Jan 2012

References

  • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999; 98:285 - 294; PMID: 10458604; http://dx.doi.org/10.1016/S0092-8674(00)81958-3
  • Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell 2004; 116:259 - 272; PMID: 14744436; http://dx.doi.org/10.1016/S0092-8674(04)00044-3
  • Osley MA. The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 1991; 60:827 - 861; PMID: 1883210; http://dx.doi.org/10.1146/annurev.bi.60.070191.004143
  • Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol 2002; 14:692 - 699; PMID: 12473341; http://dx.doi.org/10.1016/S0955-0674(02)00387-3
  • Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ. The human and mouse replication-dependent histone genes. Genomics 2002; 80:487 - 498; PMID: 12408966; http://dx.doi.org/10.1006/geno.2002.6850
  • Barcaroli D, Bongiorno-Borbone L, Terrinoni A, Hofmann TG, Rossi M, Knight RA, et al. FLASH is required for histone transcription and S-phase progression. Proc Natl Acad Sci USA 2006; 103:14808 - 14812; PMID: 17003125; http://dx.doi.org/10.1073/pnas.0604227103
  • Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, et al. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 2000; 14:2283 - 2297; PMID: 10995386; http://dx.doi.org/10.1101/gad.827700
  • Eliassen KA, Baldwin A, Sikorski EM, Hurt MM. Role for a YY1-binding element in replication-dependent mouse histone gene expression. Mol Cell Biol 1998; 18:7106 - 7118; PMID: 9819397
  • Fletcher C, Heintz N, Roeder RG. Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. Cell 1987; 51:773 - 781; PMID: 3677172; http://dx.doi.org/10.1016/0092-8674(87)90100-0
  • Mitra P, Xie RL, Medina R, Hovhannisyan H, Zaidi SK, Wei Y, et al. Identification of HiNF-P, a key activator of cell cycle-controlled histone H4 genes at the onset of S phase. Mol Cell Biol 2003; 23:8110 - 8123; PMID: 14585971; http://dx.doi.org/10.1128/MCB.23.22.8110-23.2003
  • Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074 - 1080; PMID: 11498575; http://dx.doi.org/10.1126/science.1063127
  • Berger SL. Histone modifications in transcriptional regulation. Curr Opin Genet Dev 2002; 12:142 - 148; PMID: 11893486; http://dx.doi.org/10.1016/S0959-437X(02)00279-4
  • Berger SL. The complex language of chromatin regulation during transcription. Nature 2007; 447:407 - 412; PMID: 17522673; http://dx.doi.org/10.1038/nature05915
  • Xie W, Song C, Young NL, Sperling AS, Xu F, Sridharan R, et al. Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 2009; 33:417 - 427; PMID: 19250903; http://dx.doi.org/10.1016/j.molcel.2009.02.004
  • Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 2005; 121:375 - 385; PMID: 15882620; http://dx.doi.org/10.1016/j.cell.2005.03.011
  • Williams SK, Truong D, Tyler JK. Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc Natl Acad Sci USA 2008; 105:9000 - 9005; PMID: 18577595; http://dx.doi.org/10.1073/pnas.0800057105
  • Värv S, Kristjuhan K, Peil K, Looke M, Mahlakoiv T, Paapsi K, et al. Acetylation of H3 K56 is required for RNA polymerase II transcript elongation through heterochromatin in yeast. Mol Cell Biol 2010; 30:1467 - 1477; PMID: 20065036; http://dx.doi.org/10.1128/MCB.01151-09
  • Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 2008; 134:231 - 243; PMID: 18662539; http://dx.doi.org/10.1016/j.cell.2008.06.035
  • Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B, Verreault A, et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 2008; 134:244 - 255; PMID: 18662540; http://dx.doi.org/10.1016/j.cell.2008.06.018
  • Ozdemir A, Masumoto H, Fitzjohn P, Verreault A, Logie C. Histone H3 lysine 56 acetylation: a new twist in the chromosome cycle. Cell Cycle 2006; 5:2602 - 2608; PMID: 17172838; http://dx.doi.org/10.4161/cc.5.22.3473
  • Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 2007; 27:393 - 405; PMID: 17679090; http://dx.doi.org/10.1016/j.molcel.2007.07.011
  • Jessen S, Gu B, Dai X. Pygopus and the Wnt signaling pathway: a diverse set of connections. Bioessays 2008; 30:448 - 456; PMID: 18404694; http://dx.doi.org/10.1002/bies.20757
  • Belenkaya TY, Han C, Standley HJ, Lin X, Houston DW, Heasman J. pygopus Encodes a nuclear protein essential for wingless/Wnt signaling. Development 2002; 129:4089 - 4101; PMID: 12163411
  • Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell 2002; 109:47 - 60; PMID: 11955446; http://dx.doi.org/10.1016/S0092-8674(02)00679-7
  • Parker DS, Jemison J, Cadigan KM. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 2002; 129:2565 - 2576; PMID: 12015286
  • Thompson B, Townsley F, Rosin-Arbesfeld R, Musisi H, Bienz M. A new nuclear component of the Wnt signalling pathway. Nat Cell Biol 2002; 4:367 - 373; PMID: 11988739; http://dx.doi.org/10.1038/ncb786
  • Song N, Schwab KR, Patterson LT, Yamaguchi T, Lin X, Potter SS, et al. pygopus 2 has a crucial, Wnt pathway-independent function in lens induction. Development 2007; 134:1873 - 1885; PMID: 17428831; http://dx.doi.org/10.1242/dev.001495
  • Gu B, Sun P, Yuan Y, Moraes RC, Li A, Teng A, et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 2009; 185:811 - 826; PMID: 19487454; http://dx.doi.org/10.1083/jcb.200810133
  • Fiedler M, Sanchez-Barrena MJ, Nekrasov M, Mieszczanek J, Rybin V, Muller J, et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex. Mol Cell 2008; 30:507 - 518; PMID: 18498752; http://dx.doi.org/10.1016/j.molcel.2008.03.011
  • Chen J, Luo Q, Yuan Y, Huang X, Cai W, Li C, et al. Pygo2 associates with MLL2 histone methyltransferase and GCN5 histone acetyltransferase complexes to augment Wnt target gene expression and breast cancer stem-like cell expansion. Mol Cell Biol 2010; 30:5621 - 5635; PMID: 20937768; http://dx.doi.org/10.1128/MCB.00465-10
  • Andrews PG, He Z, Popadiuk C, Kao KR. The transcriptional activity of Pygopus is enhanced by its interaction with cAMP-response-element-binding protein (CREB)-binding protein. Biochem J 2009; 422:493 - 501; PMID: 19555349; http://dx.doi.org/10.1042/BJ20090134
  • Das C, Lucia MS, Hansen KC, Tyler JK. CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 2009; 459:113 - 117; PMID: 19270680; http://dx.doi.org/10.1038/nature07861
  • Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 2009; 28:1878 - 1889; PMID: 19407812; http://dx.doi.org/10.1038/emboj.2009.119
  • Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, et al. Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle 2009; 8:2664 - 2666; PMID: 19625767; http://dx.doi.org/10.4161/cc.8.16.9367
  • McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, et al. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY) 2009; 1:109 - 121; PMID: 20157594
  • Masumoto H, Hawke D, Kobayashi R, Verreault A. A role for cell cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 2005; 436:294 - 298; PMID: 16015338; http://dx.doi.org/10.1038/nature03714
  • Driscoll R, Hudson A, Jackson SP. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 2007; 315:649 - 652; PMID: 17272722; http://dx.doi.org/10.1126/science.1135862
  • Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 2010; 285:28553 - 28564; PMID: 20587414; http://dx.doi.org/10.1074/jbc.M110.149393
  • Yuan J, Pu M, Zhang Z, Lou Z. Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 2009; 8:1747 - 1753; PMID: 19411844; http://dx.doi.org/10.4161/cc.8.11.8620
  • Nair M, Nagamori I, Sun P, Mishra DP, Rheaume C, Li B, et al. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol 2008; 320:446 - 455; PMID: 18614164; http://dx.doi.org/10.1016/j.ydbio.2008.05.553
  • Gu B, Watanabe K, Dai X. Epithelial stem cells: an epigenetic and Wnt-centric perspective. J Cell Biochem 2010; 110:1279 - 1287; PMID: 20564229; http://dx.doi.org/10.1002/jcb.22650
  • Dutta D, Ray S, Home P, Saha B, Wang S, Sheibani N, et al. Regulation of angiogenesis by histone chaperone HIRA-mediated incorporation of lysine 56-acetylated histone H3.3 at chromatin domains of endothelial genes. J Biol Chem 2010; 285:41567 - 41577; PMID: 21041298; http://dx.doi.org/10.1074/jbc.M110.190025
  • Kong S, Kim SJ, Sandal B, Lee SM, Gao B, Zhang DD, et al. The type III histone deacetylase Sirt1 suppresses p300-mediated histone H3 Lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation. J Biol Chem 2011; Epub Ahead of Print PMID: 21454709; http://dx.doi.org/10.1074/jbc.M111.218206
  • Welm BE, Dijkgraaf GJ, Bledau AS, Welm AL, Werb Z. Lentiviral transduction of mammary stem cells for analysis of gene function during development and cancer. Cell Stem Cell 2008; 2:90 - 102
  • Long AD, Mangalam HJ, Chan BY, Tolleri L, Hatfield GW, Baldi P. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem 2001; 276:19937 - 19944; PMID: 11259426; http://dx.doi.org/10.1074/jbc.M010192200
  • Li B, Rheaume C, Teng A, Bilanchone V, Munguia JE, Hu M, et al. Developmental phenotypes and reduced Wnt signaling in mice deficient for pygopus 2. Genesis 2007; 45:318 - 325; PMID: 17458864; http://dx.doi.org/10.1002/dvg.20299
  • Gu B, Chen PL. Expression of PCNA-binding domain of CtIP, a motif required for CtIP localization at DNA replication foci, causes DNA damage and activation of DNA damage checkpoint. Cell Cycle 2009; 8:1409 - 1420; PMID: 19342888; http://dx.doi.org/10.4161/cc.8.9.8322
  • Watanabe K, Meyer MJ, Strizzi L, Lee JM, Gonzales M, Bianco C, et al. Cripto-1 is a cell surface marker for a tumorigenic, undifferentiated subpopulation in human embryonal carcinoma cells. Stem Cells 2010; 28:1303 - 1314; PMID: 20549704; http://dx.doi.org/10.1002/stem.463

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.